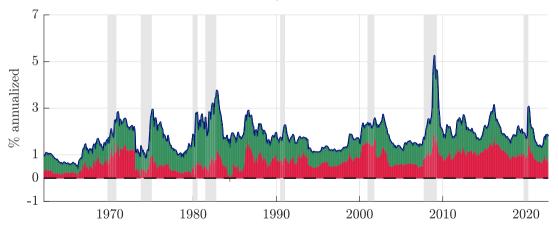
Liquidity and Safety over the Business Cycle

Andrea Ferrero University of Oxford Alexander Haas

University of Oxford

November 2023 | Oxford

Motivation


- Broad consensus in macro-finance literature:
 - Financial conditions relevant over the business cycle [Kiyotaki & Moore 1997; Bernanke, Gertler & Gilchrist 1999]
 - ► In particular, both erosion of safety & dry-up of liquidity associated with early stages of 2007/08 Great Financial Crisis [Taylor & Williams 2009; Bernanke 2010, 2018; Gorton & Metrick 2010, 2012]
- Liquidity and safety are broad (and interlinked) concepts
 - ► Hard to separate but distinction critical for policy design in crises (credit easing in 07/08; March-2020) & interlinked with fiscal multipliers
 - ► Krishnamurthy & Vissing-Jorgensen (2012) suggest empirical decomposition
- This paper: **identify structural drivers of empirical liquidity & safety** in terms of shocks to supply of safe assets, asset resaleability & asset quality

Convenience yield

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 2/28

Convenience yield | Liquidity & Safety

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 3/28

This paper

- Endogenize both the liquidity & safety of private assets in a medium-scale NK model with heterogeneous firms and two financial frictions
 - ► Liquidity: resaleability constraint on private assets
 - ► Safety: shocks to asset quality & asymmetric information
- Estimate the model over the U.S. business cycle matching empirical liquidity and safety premia \longrightarrow highlight role of two types of financial shocks
- Crisis simulations & policy counterfactuals for Fin Crisis & March-2020 → policy implications (role of QE, fiscal multipliers), liquidity puzzle ...

Literature

- Markets in the GFC | Brunnermeier & Pedersen (2009); Taylor & Williams (2009); Ashcraft, Garleanu & Pederson (2010); Gorton & Metrick (2010, 2012) ...
- Safe assets | Krishnamurthy & Vissing-Jorgensen (2012); He, Krishnamurthy & Milbradt (2016, 2019); Caballero, Farhi & Gourinchas (2017); Caballero & Farhi (2018); Bayer, Born & Luetticke (2023) ...
- Asset quality (& asymmetric information) | Kurlat (2013); Bigio (2015); Dong & Wen (2023); Bierdel, Drenik, Herreño & Ottonello (2023) ...
- Asset resaleability | Kiyotaki & Moore [KM] (1997, 2019); Ajello (2016); Del Negro, Eggertsson, Ferrero & Kiyotaki [DEFK] (2017) ...
- Business cycle fluctuations | Justiniano, Primiceri & Tambalotti (2010); Christiano, Motto & Rostagno (2014); Becard & Gauthier (2021) ...
- Liquidity puzzle | Shi (2015); Guerron-Quintana & Jinnai (2019) ...

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 5/28

I. Motivation

II. Model

III. Estimation & Results

IV. Liquidity puzzle

V. Next steps

The model in a nutshell

- Households Households
 - ▶ Consume, supply labour & own firms and retailers
- Labour unions & investment goods firms Labour unions Investment goods firms
 - \blacktriangleright Differentiate homogeneous labour & set wages on a staggered basis
 - ▶ Transform final goods into investment goods
- Heterogeneous firms (producers/ entrepreneurs)
 - ► Produce intermediate good
 - ▶ Invest in new capital formation & trade exisiting capital subject to
 - idiosyncratic investment efficiency ϵ_t
 - the current resaleability $(ar{\omega_t})$ and quality of capital $(ar{\psi_t})$
- Final goods firms & monetary and fiscal policy Final goods firms Government
 - ▶ Differentiate homogeneous intermediate good & set prices on a staggered basis
 - $\blacktriangleright\,$ Interest rate policy, ZLB & government budget constraint

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 6/28

Heterogeneous firms: Production

Firms produce subject to a pre-determined capital stock, maximizing

$$R_{Kt}k_{it-1} \equiv P_{mt}a_t \left(u_{it}k_{it-1} \right)^{\alpha} \left(z_t \ell_{it} \right)^{1-\alpha} - W_t \ell_{it} - s(u_{it})k_{it-1}.$$

Given homogeneity of intermediate output, constant returns to scale, and the absence of idiosyncratic disturbances \longrightarrow conventional aggregate relationships:

$$y_{mt} = a_t (u_t k_{t-1})^{\alpha} (z_t \ell_t)^{1-\alpha} \qquad w_t = (1-\alpha) \frac{p_{mt} y_{mt}}{\ell_t}$$
$$s'(u_t) = \alpha \frac{p_{mt} y_{mt}}{u_t k_{t-1}} \qquad r_{Kt} k_{t-1} = \alpha p_{mt} y_{mt} - s(u_t) k_{t-1}$$

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 7/28

Heterogeneous firms: Investment

Firms invest in new capital formation & trade exisiting capital, maximizing

$$\mathbb{V}^{P}(k_{it-1}, b_{it-1}, \epsilon_{t}) \equiv \mathbb{V}_{it}^{P} = \mathbb{E}_{t}\left(\sum_{s=0}^{\infty} \mathcal{M}_{t+s} D_{it+s}\right)$$

subject to

$$D_{it} = R_{Kt}k_{it-1} - P_{It}i_{it} + P_{Kt}(k_{it}^{s,g} + k_{it}^{s,b} - k_{it}^{a}) + R_{t-1}B_{it-1} - B_{it}$$

$$k_{it} = (1 - \gamma)\,\bar{\psi}_{t}k_{it-1} + \psi_{t}^{*}k_{it}^{a} - k_{it}^{s,g} + \epsilon_{t}i_{it}$$

$$k_{it}^{s,g} \leq \bar{\omega}_{t}\bar{\psi}_{t}(1 - \gamma)k_{it-1} \quad \text{and} \quad k_{it}^{s,b} \leq \bar{\omega}_{t}(1 - \bar{\psi}_{t})(1 - \gamma)k_{it-1}$$

$$\left\{D_{it}, i_{it}, k_{it}, k_{it}^{s,g}, k_{it}^{s,b}, k_{it}^{a}, B_{it}\right\}_{t=0}^{\infty} \geq 0$$

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 8/28

In more detail | Three state variables

- Idiosyncratic investment efficiency $\epsilon_t \sim F(\epsilon_t)$
- Capital k_{it} : production factor & financial asset \longrightarrow subject to two financial frictions:
 - ▶ [ff 1] limited resaleability (liquidity) of capital $\bar{\omega}_t$
 - ▶ [ff 2] limited quality (safety) of capital $\bar{\psi}_t$ & asymmetric information
- Government bonds B_{it} : financial asset
 - \longrightarrow supplied by the fiscal authority, perfectly liquid and safe

Heterogeneous firms: Investment

Firms invest in new capital formation & trade exisiting capital, maximizing

$$\mathbb{V}^{P}(k_{it-1}, b_{it-1}, \epsilon_{t}) \equiv \mathbb{V}_{it}^{P} = \mathbb{E}_{t}\left(\sum_{s=0}^{\infty} \mathcal{M}_{t+s} D_{it+s}\right)$$

subject to

$$D_{it} = R_{Kt}k_{it-1} - P_{It}i_{it} + P_{Kt}(k_{it}^{s,g} + k_{it}^{s,b} - k_{it}^{a}) + R_{t-1}B_{it-1} - B_{it}$$

$$k_{it} = (1 - \gamma)\,\bar{\psi}_{t}k_{it-1} + \psi_{t}^{*}k_{it}^{a} - k_{it}^{s,g} + \epsilon_{t}i_{it}$$

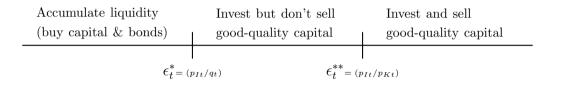
$$k_{it}^{s,g} \leq \bar{\omega}_{t}\bar{\psi}_{t}(1 - \gamma)k_{it-1} \quad \text{and} \quad k_{it}^{s,b} \leq \bar{\omega}_{t}(1 - \bar{\psi}_{t})(1 - \gamma)k_{it-1}$$

$$\left\{D_{it}, i_{it}, k_{it}, k_{it}^{s,g}, k_{it}^{s,b}, k_{it}^{a}, B_{it}\right\}_{t=0}^{\infty} \geq 0$$

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 8/28

Heterogeneous firms: Investment

- Law of motion of capital: $k_{it} = (1 \gamma) \bar{\psi}_t k_{it-1} + \epsilon_t i_{it} k_{it}^{s,g} + \psi_t^* k_{it}^a$
- Resaleability constraints on good- and bad-quality capital:


$$k_{it}^{s,g} \le \bar{\omega}_t \bar{\psi}_t (1-\gamma) k_{it-1} \quad \text{and} \quad k_{it}^{s,b} \le \bar{\omega}_t (1-\bar{\psi}_t) (1-\gamma) k_{it-1}$$

• Non-negativity constraints:
$$\left\{ D_{it}, i_{it}, k_{it}, k_{it}^{s,g}, k_{it}^{s,b}, k_{it}^{a}, B_{it} \right\}_{t=0}^{\infty} \ge 0$$

Idiosyncratic investment efficiency $\epsilon_t \sim F(\epsilon_t)$ [**ff 1**] Resaleability of capital $\bar{\omega}_t$ [**ff 2**] Quality of capital $\bar{\psi}_t$ (w/ asym inf: ψ_t^*)

In more detail | Decision rules & aggregation

Realization of $\epsilon_t \sim F(\epsilon_t)$: Firms self-select into three distinct groups

Aggregation? (i) IID shocks; (ii) firm-behavior linear in state variables;
(iii) cut-off values only depend on aggregate realizations. ✓
[compare w/ BGG 1999, contrast w/ joint hh structure in Shi 2015 & DEFK 2017]

In more detail | Fin frictions & liquidity + safety premia

Fin frictions cause spread (convenience yield) betw govt bond & capital return

- [ff 1] Limited resaleability of capital $\bar{\omega}_t$ \longrightarrow widens wedge between q_t and q_{Bt}
- [ff 2] Limited quality (safety) of capital $\bar{\psi}_t$ & asymmetric information \longrightarrow creates wedge between q_t and p_{Kt}

Nested models? With $\bar{\psi}_t = 1$ or no asymmetric information: [ff 2] turned off, $q_t = p_{Kt}$ and $\epsilon_t^* = \epsilon_t^{**}$ [think KM 1997 or DEFK 2017]

Interior solutions? Endogenous adjustment to looser fin conditions via ϵ_t^* . No need to (i) compute a separate unconstrained (interior) model solution [vs DEFK 2017], (ii) model frictions as occ binding constraints (if $B_t < \bar{B}_t$). In more detail | Fin frictions & liquidity + safety premia

$$cy_t \equiv \mathbb{E}_t \left\{ \beta \frac{\lambda_{t+1}}{\lambda_t} \left[1 + \int_{\epsilon_{t+1}^*}^{\epsilon_{t+1}} \left(\frac{\epsilon_{t+1}}{\epsilon_{t+1}^*} - 1 \right) dF(\epsilon) \right] \left(r_{Kt+1}^* - \frac{R_t}{\Pi_{t+1}} \right) \right\} = r_t^\omega + r_t^\psi$$

where
$$r_t^{\omega} \equiv \mathbb{E}_t \left\{ \beta \frac{\lambda_{t+1}}{\lambda_t} \left[\int_{\epsilon_{t+1}^*}^{\epsilon_{\max}} \left(\frac{\epsilon_{t+1}}{\epsilon_{t+1}^*} - 1 \right) dF(\epsilon) \right] \frac{(1 - \bar{\omega}_{t+1})(1 - \delta_{t+1})q_{t+1}}{q_t} \right\},$$

= $\mathbb{E}_t \left\{ \beta \frac{\lambda_{t+1}}{q_t} \left[\int_{\epsilon_{\max}}^{\epsilon_{\max}} \left(\epsilon_{t+1} - 1 \right) dF(\epsilon) - \int_{\epsilon_{\max}}^{\epsilon_{\max}} \left(\epsilon_{t+1} - 1 \right) dF(\epsilon) \right] \bar{\omega}_{t+1}(1 - \delta_{t+1})q_{t+1} \right\}$

$$r_t^{+} \equiv \mathbb{E}_t \left\{ \beta \frac{\lambda_{t-1}}{\lambda_t} \left[\int_{\epsilon_{t+1}^*} \left(\frac{1}{\epsilon_{t+1}^*} - 1 \right) dF(\epsilon) - \int_{\epsilon_{t+1}^{**}} \left(\frac{1}{\epsilon_{t+1}^{**}} - 1 \right) dF(\epsilon) \right] \frac{1}{q_t} \right\}$$
$$-\mathbb{E}_t \left\{ \beta \frac{\lambda_{t+1}}{\lambda_t} \left[1 + \int_{\epsilon_{t+1}^*}^{\epsilon_{\max}} \left(\frac{\epsilon_{t+1}}{\epsilon_{t+1}^*} - 1 \right) dF(\epsilon) \right] \frac{\bar{\omega}_{t+1}(1 - \bar{\psi}_{t+1})(1 - \gamma)p_{Kt+1}}{q_t} \right\}$$

2/2

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 13/28

I. Motivation

II. Model

III. Estimation & Results

IV. Liquidity puzzle

V. Next steps

The estimation in a nutshell

- Model estimated using Bayesian methods (parameter subset calibrated)
- Quarterly observations on 9 U.S. macro & financial variables from 1986–2019
 - ▶ 7 standard macro variables: GDP, consumption, investment, inflation, real wage, hours worked, fed funds rate (all quantities in real per capita terms)
 - 2 additional financial variables: Liquidity and safety premia [Extensions: Price of investment goods and public debt/GDP ratio]
- Model stationarized and with 10 exogenous shock processes
- Data transformations: First-differences of trending variables, all demeaned

Calibrated parameters

Para	meter	Value	Parame	eter	Value
Hou	seholds				
σ	Risk aversion	1.0000	β	Discount factor	0.9901
χ	Disutility weight on labor	0.8011	ξ	Curvature of labor disutility	1.0000
Labo	or unions		Invest	ment goods firms	
θ_p	Elasticity of labor substitution	11.000	Υ	Trend in inv specific technology	1.0025
Proc	lucers				
α	Capital share	0.4000	γ	Depreciation rate	0.0216
ν	Inv efficiency: Pareto param	5.7661	ε_{\min}	Inv efficiency: Pareto bound	0.8266
a	Steady state cyclical productivity	1.0000	μ_{z^*}	Trend growth rate of economy	1.0038
$\bar{\omega}$	Steady state capital resaleability	0.7740	$\bar{\psi}$	Steady state capital quality	0.9966
Final goods firms			Gover	nment	
θ_w	Elasticity of goods substitution	6.0000	Π^*	Steady state inflation	1.0050
g/y	Steady state govt spending/GDP	0.2000	b/y	Steady state govt debt/GDP	1.6772

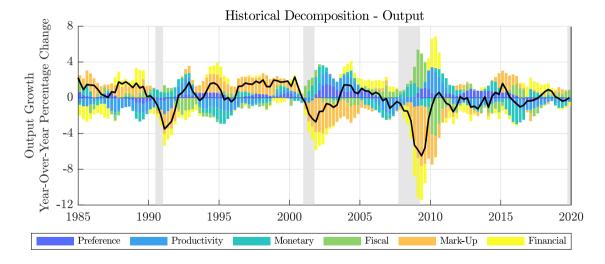
NOTE: All parameters are either calibrated to match standard targets in the literature or mean values of observables. In particular, $\bar{\omega}$ and $\bar{\psi}$ are calibrated to match the average safety and liquidity premia in the sample.

Estimated parameters I

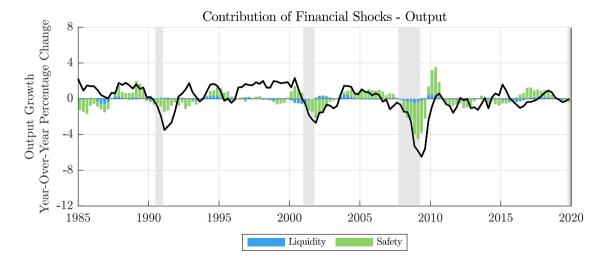
Parameter		Prior			Posterior	
		Distr	Mean	SD	Mode	$^{\mathrm{SD}}$
(A) E	Economic parameters					
Hou	seholds					
ħ	Habit parameter	beta	0.5000	0.1500	0.6589	0.0544
Lab	or unions					
ι_w	Calvo wage stickiness	beta	0.7500	0.1500	0.4423	0.0643
γ_w	Wage indexing weight on π_{t-1}	beta	0.5000	0.1500	0.6298	0.1553
Inve	stment goods firms					
$f^{\prime\prime}$	Curvature of inv adj costs	normal	5.0000	3.0000	1.0333	0.1506
Pro	ducers					
σ_s	Curvature of cap util costs	normal	1.0000	1.0000	5.1870	0.6348
Fine	al goods firms					
ι_p	Calvo price stickiness	beta	0.7500	0.1500	0.7975	0.0235
γ_p	Price indexing weight on π_{t-1}	beta	0.5000	0.1500	0.1256	0.0531
\mathbf{Gov}	ernment					
ϕ_{π}	Policy weight on inflation	gamma	1.5000	0.2500	2.6894	0.2337
ϕ_y	Policy weight on output	gamma	0.2500	0.1000	0.1442	0.0557
ρ_m	Policy inertia parameter	beta	0.8000	0.1000	0.8383	0.0161

Estimated parameters II

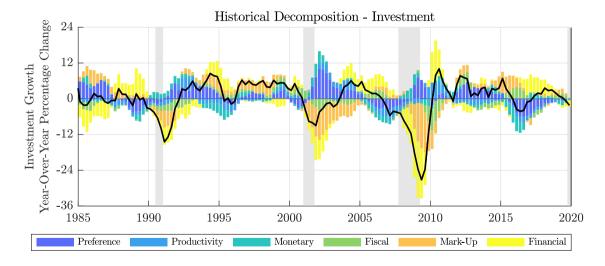
Parameter		Prior			Posterior	
		Distr	Mean	SD	Mode	$^{\mathrm{SD}}$
(B) Ex	ogenous processes					
$ ho_{\chi w} \sigma_{\chi w} ho_a$	AC wage mark-up shock SD wage mark-up innovation AC cyclical productivity shock	$egin{array}{c} { m beta} \ { m invg2} \ { m beta} \end{array}$	$0.5000 \\ 0.0100 \\ 0.5000$	0.2000 1.0000 0.2000	$0.9839 \\ 0.0235 \\ 0.2089$	$0.0117 \\ 0.0035 \\ 0.1519$
σ_a	SD cyclical productivity innovation	invg2	0.0100	1.0000	0.0020	0.0004
$\sigma_z \sigma_z$	AC trend growth rate shock SD trend growth rate innovation	$_{ m beta}$	$0.5000 \\ 0.0100$	$0.2000 \\ 1.0000$	$0.3781 \\ 0.0060$	$0.1279 \\ 0.0009$
$\sigma_\psi^{ ho_\psi}$	AC capital quality shock SD capital quality innovation	beta invg2	$0.5000 \\ 0.0100$	$0.2000 \\ 1.0000$	$0.8938 \\ 0.0023$	$0.0316 \\ 0.0002$
$\sigma_\omega^{ ho}$	AC capital resaleability shock SD capital resaleability innovation	beta invg2	$0.5000 \\ 0.0100$	$0.2000 \\ 1.0000$	$0.7996 \\ 0.0647$	$0.0426 \\ 0.0052$
$\sigma_{\chi p} \sigma_{\chi p}$	AC price mark-up shock SD price mark-up innovation	$_{ m beta}$	$0.5000 \\ 0.0100$	$0.2000 \\ 1.0000$	$0.8997 \\ 0.0188$	$0.0379 \\ 0.0032$
σ_m	SD monetary policy innovation	invg2	0.0100	1.0000	0.0013	0.0001
$\sigma_g \sigma_g$	AC govt spending/GDP shock SD govt spending/GDP innovation	beta invg2	$0.5000 \\ 0.0100$	$0.2000 \\ 1.0000$	$0.9674 \\ 0.0156$	$0.0142 \\ 0.0009$
$rac{ ho_b}{\sigma_b}$	AC govt debt/GDP shock SD govt debt/GDP innovation	beta invg2	$0.5000 \\ 0.0100$	$0.2000 \\ 1.0000$	$0.7605 \\ 0.5050$	$0.0283 \\ 0.0320$
$\sigma_{eta} \sigma_{eta}$	AC preference shock SD preference innovation	beta invg2	$0.5000 \\ 0.0100$	$0.2000 \\ 1.0000$	$0.9496 \\ 0.0010$	$0.0215 \\ 0.0004$

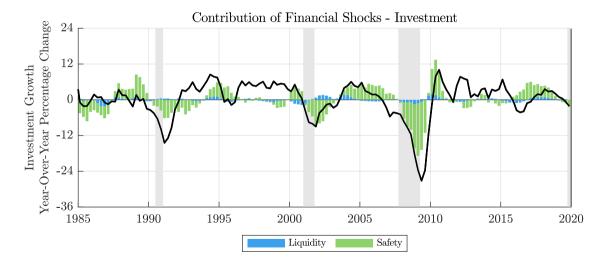

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 17/28

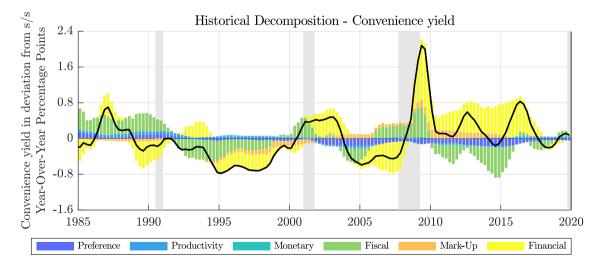
	$\varepsilon_{\chi wt}$	ε_{at}	ε_{zt}	$\varepsilon_{\psi t}$	$\varepsilon_{\omega t}$	$\varepsilon_{\chi pt}$	ε_{mt}	ε_{gt}	ε_{bt}	$\varepsilon_{\beta t}$
y_t	27.26	0.03	8.13	13.53	0.48	33.93	4.74	4.23	2.56	5.11
i_t	11.85	0.01	0.86	24.08	0.57	25.45	2.30	0.34	3.72	30.83
c_t	11.41	0.00	30.43	7.51	0.11	0.95	0.58	3.62	0.68	44.71
Π_t	5.43	0.73	2.00	35.66	1.04	15.77	21.46	1.29	6.43	10.19
R_t	2.16	0.05	1.29	59.11	1.39	4.62	13.37	1.07	10.41	6.53
cy_t	0.29	0.00	0.13	51.55	7.30	0.66	0.06	0.02	39.00	0.99
$cy_t \ r_t^\psi$	0.40	0.00	0.18	34.93	7.40	0.87	0.07	0.03	54.71	1.40
r_t^{ω}	0.02	0.00	0.01	5.36	90.71	0.04	0.00	0.00	3.75	0.10

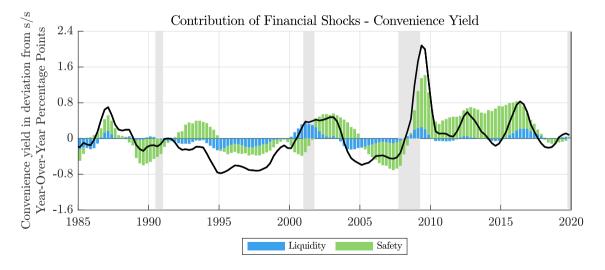

NOTE: This table displays the percent of the variance of the endogenous variables (rows) explained by the structural shocks in the model (columns) at business cycle frequency (HP-filtered variables with $\lambda = 1600$).

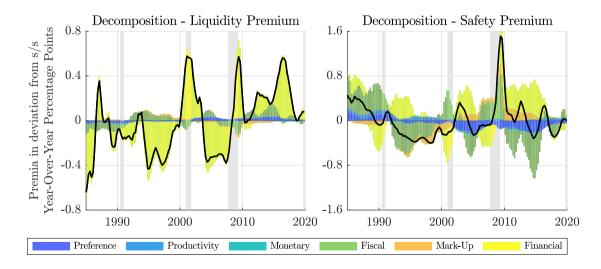
Preliminary results: Overview

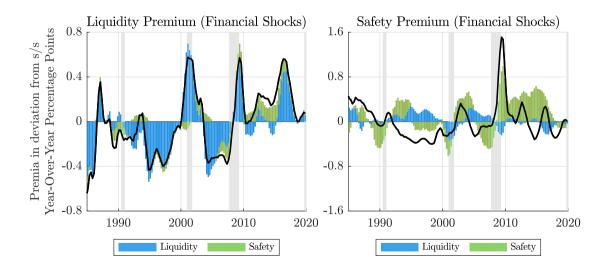

- Unconditional variance decomposition of estimated model shows **important role for financial shocks** over the business cycle
- Shocks to asset quality $(\epsilon_{\psi t})$ [safety] are key, more so than shocks to asset resaleability $(\epsilon_{\omega t})$ [liquidity]
- Shocks to supply of save assets (ϵ_{bt}) relevant for spreads, but less important in explaining variation in real variables
- Historical decomposition (next) confirms this for key macro and financial variables over the sample from 1986 to 2019


Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 20/28


Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 20/28


Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 21/28


Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 21/28

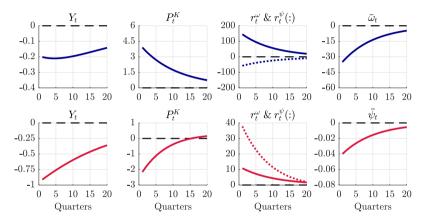

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 22/28

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 22/28

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 23/28

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 23/28

I. Motivation


II. Model

III. Estimation & Results

IV. Liquidity puzzle

V. Next steps

In more detail | A model without nominal rigidities

Note: Row 1 (blue) gives impulse responses for a shock to capital resaleability (liquidity), row 2 (red) displays impulse responses for a shock to capital quality (safety). Y_t is output, P_t^K is the price of capital, r_t^{ω} and r_t^{ψ} are liquidity and safety premia, respectively. $\bar{\omega}_t$, which is capital resaleability, and $\bar{\psi}_t$, which is the fraction of high-quality assets, display the respective exogenous disturbances. All impulse responses are given in % deviations from steady state.

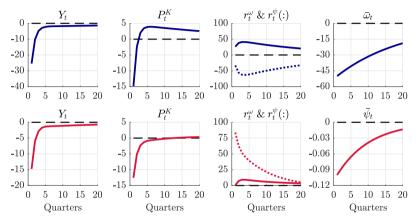
Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 24/28

The liquidity puzzle

Counterfactual asset price response: Models with a liquidity friction à la KM (2019) predict a stock market boom following an adverse financial shock.

- Shi (2015): Robust result; need a fall in the perceived quality of capital
- Ajello (2016): Nominal + real rigidities & shock to intermediation
- Guerron-Quintana and Jinnai (2019): Endogenous growth \longrightarrow LR dividends \downarrow
- Kiyotaki and Moore (2019): Storage technology & CB liquidity injection

This paper: Nominal rigidities & ZLB (in the spirit of DEFK 2017)


In more detail | Intuition

• At ZLB, $R_t = 1 \& \mathbb{E}_t r_{t+1} \equiv (R_t / \mathbb{E}_t \Pi_{t+1}) \uparrow$. Via arbitrage, $\mathbb{E}_t r_{Kt+1}^* \uparrow$.

$$\mathbb{E}_t r_{Kt+1}^* \uparrow \equiv \frac{\mathbb{E}_t r_{Kt+1} + (1-\gamma) \mathbb{E}_t \bar{\psi}_{t+1} q_{t+1}}{q_t \downarrow}$$

Note, however,

(i) $\mathbb{E}_t r_{Kt+1}^* - \mathbb{E}_t r_{t+1} \neq \text{constant} (\text{but } \bar{\omega}_t \downarrow \to cy_t \uparrow)$ (ii) $\mathbb{E}_t r_{Kt+1} \neq \text{constant} (\text{but slow-moving } K_t \text{ and } a_t \text{ pro-cyclical})$ (iii) $q_t \neq p_{Kt} (\text{but } p_{Kt} = \psi_t^* q_t)$ In more detail | A model with nominal rigidities & ZLB

Note: Row 1 (blue) gives impulse responses for a shock to capital resaleability (liquidity), row 2 (red) displays impulse responses for a shock to capital quality (safety). Y_t is output, P_t^K is the price of capital, r_t^{ω} and r_t^{ψ} are liquidity and safety premia, respectively. $\bar{\omega}_t$ - capital resaleability - and $\bar{\psi}_t$ - the fraction of high-quality assets - are the respective exogenous disturbances, set to bring the model to the ZLB for 4 periods. All impulse responses are given in % deviations from steady state. Calibration

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 27/28

I. Motivation

II. Model

III. Estimation & Results

IV. Liquidity puzzle

V. Next steps

This version

- Motivation [liquidity and safety over the business cycle]
- Model [medium-scale NK model w/ two financial frictions; insights]
- Estimation [data; historical decomposition; role of financial shocks]
- Liquidity puzzle [Nominal rigidities & ZLB]

Work in progress

- Estimation
 - ▶ data on public liquidity
- Crisis simulations & policy counterfactuals
 - $\blacktriangleright\,$ impulse responses, for ecast-errors, liquidity puzzle at ZLB
 - $\blacktriangleright\,$ role of CB liquidity provision; March-2020 liquidity crunch; fiscal multipliers

Extra slides

Model: Households

 \blacktriangleright Consume, supply labor & own firms and retailers

The representative household maximizes

$$\mathbb{V}_t^H = \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} \beta^s \left[\ln(c_{t+s} - \hbar c_{t+s-1}) - \frac{\chi}{1+\xi} \ell_{ht+s}^{1+\xi} \right] \right\}$$

subject to

$$P_t c_t + \int_{i \in [0,1]} V_{it} s_{it} \ di = W_{ht} \ell_{ht} + \int_{i \in [0,1]} (V_{it} + D_{it}) s_{it-1} \ di + \Omega_t - T_t,$$

▲ main part

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 1/6

Model: Labor unions

▶ Differentiate homogeneous labour & set wages on a staggered basis

$$\max_{\widetilde{W}_{lt}} \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} \iota_w^s \mathcal{M}_{t+s} \left[(1 - \tau_{wt+s}) \widetilde{W}_{lt} X_{t,t+s}^W - W_{ht+s} \right] \ell_{lt,t+s} \right\}$$

subject to

$$\ell_{lt,t+s} = \left(\frac{\widetilde{W}_{lt}X_{t,t+s}^{W}}{W_{t+s}}\right)^{-\theta_{w}}\ell_{t+s},$$

$$X_{t,t+s}^{W} = \begin{cases} \prod_{k=0}^{s-1} (\mu_{zt+k+1})^{\gamma_{\mu}}(\mu_{z})^{1-\gamma_{\mu}}(\Pi_{t+k})^{\gamma_{w}}(\Pi_{t+k+1}^{*})^{1-\gamma_{w}} & \text{if } s > 0\\ 1 & \text{if } s = 0 \end{cases}$$
(*main part)

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 2/6

Model: Investment goods firms

▶ Transform final goods into investment goods

The representative investment goods firm maximizes

$$\mathbb{V}_{t}^{I} = \mathbb{E}_{t} \left\{ \sum_{s=0}^{\infty} \mathcal{M}_{t+s} \left\{ P_{It+s} - \left[1 + f\left(\frac{i_{t+s}}{i_{t+s-1}}\right) \right] P_{t+s} \right\} i_{t+s} \right\}$$

where

$$f(x_t) \equiv \frac{1}{2} \left\{ \exp\left[\sqrt{f''} \left(x_t - x\right)\right] + \exp\left[-\sqrt{f''} \left(x_t - x\right)\right] - 2 \right\}$$

۰	mai	n	\mathbf{par}	t

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 3/6

Model: Final goods firms

▶ Differentiate homogeneous goods & set prices on a staggered basis

$$\max_{\widetilde{P}_{jt}} \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} \iota_p^s \mathcal{M}_{t+s} \left[(1 - \tau_{pt+s}) \widetilde{P}_{jt} X_{t,t+s}^P - P_{mt+s} \right] y_{jt,t+s} \right\}$$

subject to

$$y_{jt,t+s} = \left(\frac{\tilde{P}_{jt}X_{t,t+s}^{P}}{P_{t+s}}\right)^{-\theta_{p}} y_{t+s},$$
$$X_{t,t+s}^{P} = \begin{cases} \prod_{k=0}^{s-1} (\Pi_{t+k})^{\gamma_{p}} (\Pi_{t+k+1}^{*})^{1-\gamma_{p}} & \text{if } s > 0\\ 1 & \text{if } s = 0 \end{cases} \quad \text{(main part)}$$

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 4/6

Model: Monetary & fiscal policy Interest rate policy, ZLB & government budget constraint

Monetary policy follows a standard Taylor Rule subject to the ZLB,

$$R_{t} = \max\left\{R_{t-1}^{\rho_{m}}\left[R\left(\frac{\Pi_{t}}{\Pi_{t}^{*}}\right)^{\phi_{\pi}}\left(\frac{y_{t}/y_{t-1}}{\exp(\Gamma)}\right)^{\phi_{y}}\right]^{1-\rho_{m}}e^{\varepsilon_{mt}}, 1\right\}$$

Govt spending & debt issuance are exogenous, the budget constraint is given by

$$B_{t+1} = R_t B_t + P_t g_t - T_t$$
 (main part)

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 5/6

Liquidity puzzle: Calibration of the simple model

▲ main part

Para	meter	Value	Paramet	ter	Value
Hou	seholds				
σ	Risk aversion	1.000	β	Discount factor	0.985
\hbar	Habit parameter	0.815	χ	Utility weight on labor	6.420
ξ	Inverse Frisch elasticity	0.500			
Proc	lucers				
α	Capital share	0.360	γ	Depreciation rate	0.022
ν	Inv efficiency: Pareto param	7.140	ϵ_{\min}	Inv efficiency: Pareto bound	0.860
$\bar{\omega}$	SS capital resaleability $(ff#1)$	0.410	$ar{\psi}$	SS capital quality $(ff#2)$	0.997
Reta	ailers				
ζ	Elasticity of substitution	11.00	L	Probability of fixed prices	0.750
Gov	ernment				
ϕ_{Π}	Policy rule inflation response	1.500	ϕ_X	Policy rule output response	0.125
ρ	Policy rule inertia	0.000	G/Y	SS Govt expenditure/ GDP	0.200
B/Y	SS Govt debt/ GDP	0.560	,	- ,	

Ferrero & Haas (2023): Liquidity and Safety over the Business Cycle 6/6