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A Stylized model and optimal policy

Appendix A relates to Section 2 (main paper) on optimal policy in the stylized model.
Section A.1 derives a simple model of reserve demand. Section A.2 documents the full
derivation of the stylized model. Section A.3 shows that the stylized model captures key
features of the quantitative model if a Taylor-type policy rule is added. Section A.4 derives
the first-order conditions under commitment and discretion and proves Propositions 2
and 3, respectively. Section A.5 shows that not any private-sector state variable makes
negative rates optimal. Section A.6 describes the non-linear solution algorithm used to
generate our numerical results. Section A.7 derives the consumption equivalent measure
of welfare and provides welfare results. Section A.8 documents one additional optimal
policy experiment. Finally, Section A.9 derives the analytical solutions for a simplified
version of the model used for comparative statics in the main text.1

1For expositional clarity, we simplify the notation compared to Section 2. In particular, we drop time
subscripts and replace them with recursive notation. y denotes the output gap.
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Appendix: The Signalling Channel of Negative Int Rates de Groot and Haas (2023)

A.1 Set up: A simple model of reserve demand [Section 2.1]

We analyse a single bank’s reserve demand decision. At t = 0, the bank has L loans
and Dr = L retail deposits (without loss of generality, we set Dr = 1). The bank also
raises wholesale deposits, Dw ≥ 0, and places them in its reserve account at the central
bank to obtain A = Dw reserves. At t = 1, loans are repaid at Rl, reserves are repaid
at R, and all deposits (Dr + Dw) are repaid at Rd. At t = 2, a fraction σ ∈ (0, 1)

of total deposits (D̃ = σ (1 +Dw)) flow out of the bank with probability 1/2. The cost

function 2θ
1+ξ

(
max

[
D̃ − A, 0

])1+ξ

(for ξ > 1) captures interbank market frictions and the
illiquidity of loans (reserves are perfectly liquid). The bank solves the following problem:

max
A

E
{
(Rl −Rd) + (R−Rd)A− 2θ

1 + ξ

(
max

[
D̃ − A, 0

])1+ξ
}
,

max
A

{
(Rl −Rd) + (R−Rd)A− θ

1 + ξ
(max [σ (1 + A)− A, 0])1+ξ

}
. (A1)

The solution is as follows: If R > Rd, the demand for reserves is unbounded. If R < Rd,
the bank will optimally chose a level of reserves such that a potential outflow of deposits
is associated with non-zero cost (the left-hand side of the max operator). In this case, the
optimal level of reserves, A∗, is given by

A∗ =
σ

1− σ
− 1

1− σ

(
Rd −R

θ (1− σ)

)1/ξ

. (A2)

Optimal reserve holdings, A∗, are increasing in the level of liquidity risk, σ. When there
is no liquidity risk, σ = 0, the bank holds no reserves. Optimal reserve holdings are also
increasing in the illiquidity of loans, θ. When loans are fully liquid, θ = 0, the bank holds
no reserves. Defining x ≡ R/Rd and the reserve-to-deposit ratio as α ≡ A/(1 + A), we
can rewrite the demand curve, α(x), as

α (x) =
σ −

(
Rd(1−x)
θ(1−σ)

)1/ξ
1−

(
Rd(1−x)
θ(1−σ)

)1/ξ . (A3)

This demand curve has the following properties: α(1) = σ > 0, α′(x) > 0, and α′′(x) > 0.
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Appendix: The Signalling Channel of Negative Int Rates de Groot and Haas (2023)

A.2 Log-linear equilibrium: derivation [Section 2.2]

New-Keynesian IS equation The household problems and first-order conditions are
given in the main text. In steady state, Rd = 1/β. The log-linear form of the first-order
conditions for the saver household are given by

cs,t = Etcs,t+1 −
1

σ
(rd,t − Etπt+1 − st) , (A4)

φls,t = −σcs,t + ws,t, (A5)

where lower case letters refer to log-levels. The borrower household’s conditions are

cb,t = Etcb,t+1 −
1

σ
(rb,t − Etπt+1 − st) , (A6)

φlb,t = −σcb,t + wb,t, (A7)

where, in steady state, Rb = 1/βb. The log-linear aggregate resource constraint is given
by yt = (1− c) cs,t + ccb,t, where c ≡ Cb/Y . Combining this definition with the two
individual Euler equations gives the aggregate Euler equation:

yt = Etyt+1 −
1− c
σ

(rd,t − Etπt+1 − st)−
c
σ
(Etrb,t+1 − Etπt+1 − st) . (A8)

Next, substituting the transfer from savers to borrowers into the borrower household’s
budget constraint gives the following simple borrower household consumption function:
Cb,t = Bt. Using the definition for leverage, Φt = Bt/Nt, the log-linear form of the
borrower household consumption function is given by cb,t = ϕt + nt. Rearranging the
borrower household’s Euler condition, 1

σ
(rb,t − Etπt+1 − st) = Etcb,t+1−cb,t, and combining

it with the consumption function above, we can rewrite the aggregate Euler equation as

yt = Etyt+1 −
1− c
σ

(rd,t − Etπt+1 − st)− c (Etϕt+1 − ϕt + Etnt+1 − nt) . (A9)
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New-Keynesian Phillips curve Log-linearizing the production sector’s first-order
conditions yields the textbook new-Keynesian Phillips curve in terms of marginal cost,

πt = βEtπt+1 +
(1− ιβ) (1− ι)

ι
mct. (A10)

Log-linear marginal cost and aggregate output are given by mct = ωws,t + (1− ω)wb,t

and yt = ωls,t+(1− ω) lb,t, respectively. Using the two labor-supply first-order conditions
from the household problem, we can rewrite marginal cost as follows:

mct = (φ+ σ) yt, (A11)

and the Phillips curve as

πt = βEtπt+1 +
(1− ιβ) (1− ι) (φ+ σ)

ι
yt. (A12)

Note that since we only consider disturbances to households’ subjective discount factors,
the output gap coincides with output and hence yt can be relabeled as the output gap.

Financial sector equilibrium conditions Steady state leverage is given by N̄ . The
log-linear net worth evolution equation is given by

nt+1 = θR

(
nt + Φ(rb,t − πt+1)− (Φ− 1)

(
rd,t − αrt
1− α

− πt+1

))
. (A13)

When θ = 0, then nt+1 = 0. The steady state tax on banks ensures that in steady state
Rb (1− τ) = Rd. The log-linear incentive compatibility constraint is given by

ϕt = (Etmt,t+1 − πt+1) + θEtϕt+1 +

(
Φrb,t − (Φ− 1)

rd,t − αrt
1− α

)
. (A14)

where mt,t+1 is the log-linear stochastic discount factor of the saver household.

Substituting for rb,t using the borrower household’s Euler equation gives

ϕt = −rd,t + θEtϕt+1 + Φσ (Etϕt+1 − ϕt + Etnt+1 − nt)

+ Φ (Etπt+1 + st)− (Φ− 1)
rd,t − αrt
1− α

. (A15)

Rearranging and setting θ = 0 such that nt = 0 gives Equation (15) in the main text.
When θ > 0, the model is described by five endogenous variables, {πt, yt, ϕt, nt, rd,t}, and
four private-sector conditions, (A9), (A12), (A13), and (A15).
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A.3 Log-linear equilibrium: a Taylor-type rule [Section 2.2]

By replicating the key results from Section 3, this section shows that the stylized model
captures the key features of the quantitative model. The experiments are conducted
combining the IS and Phillips curve of the stylized model, Equations (13) and (16),
respectively, and the Taylor-type rule of the quantitative model, (29).

Figure A1: Stylized model: Natural rate shock with inertia in the policy rule

Note: Stylized model from Section 2 with a Taylor-type policy rule. α = 0.2, ρ = 0.85. Impulse
responses to a natural rate shock that brings the economy to the ZLB for 4 quarters. All interest rates
displayed are in annualized percent. Other variables are in 100×log-deviation from steady state. Inflation
is annualized.
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Figure A2: Stylized model: Monetary policy shock in negative territory

(a) Policy rule with inertia

(b) Policy rule without inertia

Note: Stylized model from Section 2 with a Taylor-type policy rule. (a) α = 0.2 and ρ = 0.85,
(b) α = 0.2 and ρ = 0. Impulse responses to a −25bp iid monetary policy shock at the ZLB. All interest
rates displayed are in annualized basis points. Output and inflation are in basis point deviation from
steady state. Inflation is annualized.
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Figure A3: Stylized model: Contribution of signalling and interest margin channels

Note: Stylized model from Section 2 with a Taylor-type policy rule. Impulse responses to a −25bp iid
monetary policy shock at the ZLB. Inflation is annualized. We linearly decompose the baseline response
into “Signalling”—α = 0 and ρ = 0.85, i.e. no costly interest margin channel—and “Interest margin”—
difference between the baseline and “Signalling”.
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A.4 Analytical results: Propositions 2 and 3 [Section 2.3]

The recursive problem of the optimal policymaker is given by

V (π−1, s) = max
{π,y,rd,r}

−1

2

(
π2 + λy2

)
+ βEV (π, s+1)

π = βEπ+1 + γπ−1 + κy, (PC)

y = Ey+1 − σ−1 (rd − Eπ+1 − s)− ϕ (rd − r) , (IS)

rd ≥ 0 (ZLB), rd − r ≥ 0 (ARB), rd (rd − r) = 0 (X),

where the decentralized competitive equilibrium and a set of three inequality constraints
on the policy tools constrain the optimal choice. This model is a slightly generalized
version of the stylized model in Section 2. All proofs hold with lagged inflation added to
the new-Keynesian Phillips Curve—resulting from, for example, price indexation.

Under commitment, the equilibrium can be summarized by the following equations:

π = βEπ+1 + γπ−1 + κy,

y = Ey+1 − σ−1 (rd − Eπ+1 − s)− ϕ (rd − r) ,

π : 0 = π − βEV1(π, s+1)− ζPC + ζPC−1 + σ−1β−1ζIS−1 ,

y : 0 = λy + κζPC − ζIS + β−1ζIS−1 ,

rd : 0 = ζIS
(
σ−1 + ϕ

)
+ ζZLB + ζARB + ζX (2rd − r) ,

r : 0 = ζISϕ+ ζARB + ζXrd,

KT1 : 0 = ζZLBrd,

KT2 : 0 = ζARB (rd − r) ,

EC : V1(π−1, s) = −γζPC ,

where the ζ are Lagrange multipliers. Based on the set of three inequality constraints
on the policy tools, the following regimes can be defined: Regime I: {rd > 0, r = rd},
Regime II: {rd = 0, r < 0}, and Regime III: {rd = 0, r = 0}.
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Proof of Proposition 2 Proposition 2 states that, under commitment, the reserve
rate will never be set negative. This is equivalent to stating, r ∈ Regime II is not optimal.
We prove this by contradiction.

For a given state vector, s =
{
π−1, ζIS−1 , ζPC−1 , s

}
, define rc,zlb (s) and rc,zlb

d (s) as the
reserve and deposit rate, respectively, that are the solution to the constrained commitment
problem where negative rates are not allowed, r ∈ {Regime I, Regime III}, and rc,nir (s)

and rc,nir
d (s) as the reserve and deposit rate that solve the commitment problem where

negative reserve rates are allowed, i.e. r ∈ {Regime I, Regime II, Regime III}.

Consider ϕ > 0. Suppose ∃ s | V c,nir (s) > V c,zlb (s) −→ rc,nir < 0 and rc,nir
d = 0

(Regime II). Then, the equilibrium allocation for {π, y} is given by (PC) and (IS),
where (IS) can be reduced to y = Ey+1 + σ−1 (Eπ+1 + s) + ϕrc,nir. Yet, rc,* = rc,*

d =

−ϕσrc,nir > 0 (Regime I) generates the same equilibrium allocation, V c,* (s) = V c,nir (s).
However, rc,* and rc,*

d are in the space of the constrained commitment problem such that
V c,* (s) = V c,nir (s) ≤ V c,zlb (s). Thus, we have a contradiction.

Consider ϕ = 0. The reserve rate in this case drops out of the equilibrium system that
determines {y, π, rd, ζIS, ζPC} as ϕ (rd − r) = 0 ∀ r in (IS). There is no role for negative
interest rates.
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To study optimal time-consistent policy with and without policy smoothing, we augment
the policymaker’s objective function by adding a preference for smoothing interest rates,
given by ψ. This gives the following, slightly modified, recursive planner’s problem:

V (r−1, π−1, s) = max
{π,y,rd,r}

−1

2

(
(1− ψ)

(
π2 + λy2

)
+ ψ (r − r−1)

2)+ βEV (r, π, s+1)

π = βEπ+1 + γπ−1 + κy, (PC)

y = Ey+1 − σ−1 (rd − Eπ+1 − s)− ϕ (rd − r) , (IS)

rd ≥ 0 (ZLB), rd − r ≥ 0 (ARB), rd (rd − r) = 0 (X).

Under discretion, the equilibrium can be summarized by the following equations:

π = βEπ (r, π, s+1) + γπ−1 + κy,

y = Ey (r, π, s+1)− σ−1 (rd − Eπ (r, π, s+1)− s)− ϕ (rd − r) ,

π : 0 = (1− ψ) π − EV2 (r, π, s+1)− ζPC (1− βEπ2 (r, π, s+1))

+ ζIS
(
Ey2 (r, π, s+1) + σ−1Eπ2 (r, π, s+1)

)
,

y : 0 = (1− ψ)λy − ζIS + κζPC ,

rd : 0 = ζIS
(
σ−1 + ϕ

)
+ ζZLB + ζARB + ζX (2rd − r) ,

r : 0 = ψ (r − r−1)− βEV1 (r, π, s+1) + βEπ1 (r, π, s+1) ζPC

+ ζIS
(
Ey1 (r, π, s+1) + σ−1Eπ1 (r, π, s+1)

)
+ ζARB + ζXrd,

KT1 : 0 = ζZLBrd,

KT2 : 0 = ζARB (rd − r) ,

EC1 : V1 (r−1, π−1, S) = −ψ (r − r−1) ,

EC2 : V2 (r−1, π−1, S) = −ζPCγ,

where the ζ are Lagrange multipliers. Analogous to the commitment problem, once again
the following three policy regimes can be defined: Regime I: {rd > 0, r = rd}, Regime II:
{rd = 0, r < 0}, and Regime III: {rd = 0, r = 0}.
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Proof of Proposition 3 Proposition 3 states that, under discretion, with ψ = 0,
the reserve rate will never be set negative. Equivalently, r ∈ Regime II is not optimal.
We prove this by contradiction.

For a given state vector, s =
{
r−1, π−1, ζIS−1 , ζPC−1 , s

}
, define rd,zlb (s) and rd,zlb

d (s) as the
reserve and deposit rate, respectively, that are the solution to the constrained discretion
problem where negative rates are not an option, r ∈ {Regime I, Regime III}, and
rd,nir (s) and rd,nir

d (s) as the reserve and deposit rate that solve the discretion problem
where negative reserve rates are allowed, i.e. r ∈ {Regime I, Regime II, Regime III}.

With ψ = 0, V1 (r−1, π−1, s) = 0 and r−1 drops out as a state variable, i.e. expectations
and allocations in the discretionary equilibrium are independent of r−1. Thus, redefining
s =

{
π−1, ζIS−1 , ζPC−1 , s

}
we proceed as in the commitment case.

Consider ϕ > 0: Suppose ∃ s | V d,nir (s) > V d,zlb (s) −→ rd,nir < 0 and rd,nir
d = 0

(Regime II). Then, the equilibrium allocation for {π, y} is given by (PC) and (IS),
where (IS) can be reduced to y = Ey (π, s+1) + σ−1 (Eπ (π, s+1) + s) + ϕrd,nir. Yet,
rd,* = rd,*

d = −ϕσrd,nir > 0 (Regime I) generates the same equilibrium allocation,
V d,* (s) = V d,nir (s). However, rd,* and rd,*

d are in the space of the constrained commit-
ment problem such that V d,* (s) = V d,nir (s) ≤ V d,zlb (s). Thus, we have a contradiction.

Consider ϕ = 0: The reserve rate in this case drops out of the equilibrium system that
determines {y, π, rd, ζIS, ζPC} as ϕ (rd − r) = 0 ∀ r in (IS). There is no role for negative
interest rates.

11



Appendix: The Signalling Channel of Negative Int Rates de Groot and Haas (2023)

A.5 Analytical results: additional state variables [Section 2.3]

This section discusses the possibility whether either rt−1 or alternative private-sector state
variables (e.g., πt−1 and yt−1) appearing in the private sector equilibrium conditions can
generate results akin to our signalling channel, thus removing the need to assume a policy
smoothing motive. The discussion proceeds in two parts.

Part I Suppose that the IS curve and an inertial monetary policy rule are given by

yt = Etyt+1 −
1

σ
(rt − Etπt+1 − st) , (A16)

rt = f (πt, yt) + ρrt−1. (A17)

This policy rule can be written as a geometric distributed lag of past inflation and output,

(1− ρL) rt = f (πt, yt) ,

rt =
ϕπ

(1− ρL)
f (πt, yt) ,

= f (πt, yt) + ρf (πt−1, yt−1) + ρ2f (πt−2, yt−2) + · · · . (A18)

By substitution, in an unconstrained environment, the equilibrium paths of output and
inflation in (A16) and (A17) must be equivalent to the following equilibrium that features
an IS curve with a lag structure in inflation and output; and a policy rule without inertia,

yt = Etyt+1 −
1

σ

(
rt − Etπt+1 − st + ρf (πt−1, yt−1) + ρ2f (πt−2, yt−2) + · · ·

)
, (A19)

rt = f (πt, yt) . (A20)

Alternatively, the IS curve can also be written in terms of lagged policy rates as follows

yt = Etyt+1 −
1

σ

(
rt − Etπt+1 − st + ρrt−1 + ρ2rt−2 + · · ·

)
. (A21)

Thus, unconstrained by the ZLB, a model with an appropriately chosen structure of state
variables in the private sector equilibrium conditions can replicate the equilibrium of the
model in which the only state variable comes from Taylor rule inertia. We do not attempt
to provide a micro-foundation for such a structure. However, an important insight is that
a single lagged inflation or output term is not sufficient to replicate the equilibrium of the
model with smoothing, especially when ρ is large (e.g., in the order of 0.8).

While inflation and output follow the same equilibrium path, the equilibrium interest rate
path is quite different. In particular, the effect on impact (t = 0) for rt in response to an
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exogenous shock is of the same magnitude. However, after that the equilibrium path of
the interest rate without smoothing features faster mean reversion. This implies that once
the ZLB constraint is introduced, the equilibrium paths for inflation and output are no
longer equivalent across models since the numbers of periods spent at ZLB are different.

Part II More generally, we can write our 3-equation new-Keynesian model—abstracting
from the costly interest margin channel—as

0 = Etf
(
πt+1, yt+1, πt, yt, r

d
t

)
= 0, (A22)

rt = g (πt, yt) + εt, (A23)

rdt =

{
rt if rt ≥ 0

0 if rt < 0
, (A24)

where (A22) incorporates the private-sector equations of the Phillips and IS curve. To
see that adding endogenous state variables

(
πt−1, yt−1, r

d
t−1

)
to the private-sector equilib-

rium (whether because of inflation indexation, consumption habits, or long-term bonds,
respectively) does not generate an effective signalling channel of negative interest rates,
consider the following experiment: Suppose r∗0 = 0 and the equilibrium path is defined by{
π∗
t , y

∗
t , r

d∗
t , r

∗
t

}∞
t=0

. In this case, a monetary policy shock, ε0 < 0, lowers r0 but since rd0 re-
mains unchanged at 0, this leaves the rest of the equilibrium path unchanged, irrespective
of the presence of additional state variables in the private-sector equations.

This ineffectiveness of negative interest rates disappears if the Taylor rule contains a
smoothing term, for example, as follows: rt = g (πt, yt) + ρrt−1 + εt. In this case, suppose
r0 = 0 and r1 > 0. The same iid monetary policy shock in period 0 leaves rd0 unchanged.
However, all else equal, this shock lowers r1 and hence rd1. Since rd1 enters the private-sector
equilibrium conditions, this alters the equilibrium path

{
πt, yt, r

d
t , rt

}∞
t=0

.

Finally, note that the reserve rate, rt does not enter (A22). It is difficult to conjecture
a microfoundation (e.g., because of sticky information) in which the reserve rate would
enter as a state variable, rt−1, without the original presence of rt. Of course, when ϕ > 0,
rt does enter via the costly interest margin channel term in the IS curve, −ϕ (rd,t − rt),
but this has an unambiguously negative sign on output. This is also the case in the
quantitative model in Section 3 where the presence of rt−1 has an unambiguous negative
sign in the banks’ net worth accumulation equation.
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A.6 Numerical results: policy function iteration [Section 2.4]

To derive a solution to the time-consistent optimal policymaker’s problem, we use a policy
function iteration algorithm, solving for π (r, g), y (r, g), r′ (r, g), rd (r, g), ζZLB (r, g), and
ζARB (r, g). The algorithm proceeds as follows:

1. SetNi: number of points on the interest rate grid, Ns: number of exogenous states, ϵ:
tolerance limit for convergence, u: updating parameter. Set grid points {i0, . . . , iNi

}.
The AR(1) process for the natural rate, g, is approximated using Tauchen and
Hussey (1991)’s quadrature algorithm that gives a set of grid points {s0, . . . , sNs}
and a transmission matrix, M .

2. Start iteration j with conjectured functions for r′j (r, g) and πj (r, g). The initial
functions are set to r′0 (r, g) = 1/β − 1 and π0 (r, g) = 0. π (r, g) is only defined at
the nodes of the grids for the policy rate and shock, but since r′ (r, g) is generally
not going to match node grids exactly, the function π (r, g) is interpolated over the
first argument to determine its values at πj (r′j (r, g) , g′). Construct expectations
Eπj (r′j (r, g) , g′), denoted Eπj for short. Repeat for r′, giving Erj.

3. Using the Phillips curve, calculate y:

yj (r, g) =
1

κ

(
πj (r, g)− Ejπ

)
.

4. Construct one-step ahead output gap expectations, Eyj.

5. Construct the deposit rate function rd (r, g) = max (0, r′j (r, g)).

6. Using the IS and Phillips curve, re-calculate y and π, respectively:

y∗ (r, g) = Eyj − σ−1
(
rd (r, g)− Eπj − g

)
− ϕ

(
rd (r, g)− r′j (r, g)

)
,

π∗ (r, g) = βEπj + κy∗ (r, g) ,

and then update expectations, Ey∗ and Eπ∗.

7. Construct numerical derivatives of π as follows:

π1 (r, g) ≡
∂π∗ (r, g)

∂r
=

{
π∗(ik,g)−π∗(ik−1,g)

ik−ik−1
for k = 1, ..., Ni,

π∗(i1,g)−π∗(i0,g)
i1−i0

for k = 0.

and denote the function π1 for short. Calculate the one-step ahead values of these
derivative functions, π1 (r

′j (r, g) , g′), and calculate expectations, denoted Eπ1. Re-
peat for y giving Ey1.

14



Appendix: The Signalling Channel of Negative Int Rates de Groot and Haas (2023)

8. Using the FOC equation to re-calculate r′:

for r′j (r, g) > 0,

r′∗ (r, g) =
1

ψ (1 + β)

(
ψr + ψβErj − (1− ψ) βEπ1π

∗ (r, g) + ζ∗ZLB (r, g)

− (1− ψ) (Ey1 + σ−1Eπ1 − σ−1) (λy∗ (r, g) + κπ∗ (r, g))

)
else

r′∗ (r, g) =
1

ψ (1 + β)

(
ψr + ψβErj − (1− ψ) βEπ1π

∗ (r, g) + ζ∗ZLB (r, g)

− (1− ψ) (Ey1 + σ−1Eπ1 + ϕ) (λy∗ (r, g) + κπ∗ (r, g))

)

9. if max ((π∗ (r, g)− πj (r, g)) , (r′ ∗ (r, g)− r′j (r, g))) < ϵ, then stop.
else j = j + 1 and update the guess as follows:

πj (r, g) = uπj−1 (r, g) + (1− u)π∗ (r, g) ,

r′j (r, g) = ur′j−1 (r, g) + (1− u) r′∗ (r, g) .

Repeat steps 2-9.
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A.7 Numerical results: welfare computation [Section 2.4]

The social welfare function can be translated into a consumption equivalent measure via

CE = 100× (1− β)λ−1
(
σ−1 + η

)
E
(
V SW

)
, (A25)

where η is the inverse labor supply elasticity, set to 0.47 in our calibration, and E
(
V SW

)
is the unconditional mean of the social welfare function. CE is the percentage of steady
state consumption that the representative household would forgo in each period to avoid
uncertainty. Less negative values thus represent an improvement in welfare. Figure A4
plots the consumption equivalent measure of welfare across a range of values for the
smoothing parameter, ψ. It demonstrates three features. One, allowing for negative
interest rates in the toolkit of the policymaker is weakly welfare dominant. Two, it is
optimal to delegate policy to a central banker with a small but meaningful preference for
smoothing. Three, the optimal value of ψ is virtually the same, irrespective of whether
negative interest rates are available or not.

Figure A4: Welfare and the optimal degree of smoothing

Note: Consumption equivalent in percent of steady state consumption. Black-dash is the optimal value
of ψ. “ZLB” denotes policy without negative interest rates. “NIR” denotes policy with negative rates.
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A.8 Numerical results: optimal policy experiment [Section 2.4]

In this section, we add one more set of results to our investigation regarding the optimality
of negative rates. Figure A5 shows an experiment in which the natural real rate, st, drops
into negative territory and remains at that level for 3 quarters before returning to steady
state. The red-dash line is our baseline parameterization. The black-solid line is the equi-
librium outcome when the policymaker is not able to set a negative reserve rate (or, equiv-
alently, when the cost of negative interest rates is sufficiently high—in this case ϕ > 0.35—
such that the policymaker chooses not to use negative interest rates). The green-dotted
line plots an extreme scenario where there is no cost of negative interest rates (ϕ = 0).

Figure A5: Optimal policy scenarios

Note: Impulse responses to a drop in st into negative territory for 3 quarters before jumping back to its
steady state value. The output gap is measured in percent. Inflation is in annualized percent deviation
from steady state. The deposit and reserve rates are in levels, annualized.

When ϕ > 0.35, the policymaker behaves as if there was a ZLB on the reserve rate. The
nominal reserve rate is lowered to the ZLB, but this easing does not generate a sufficient
fall in the real deposit rate, rd,t − Etπt+1, to offset the fall in st. As a result, inflation
falls and the output gap opens. In contrast, when ϕ = 0.2 the policymaker gradually
lowers the reserve rate into negative territory, reaching −1.2% in period 4. Although the
deposit rate remains bounded by zero, this negative reserve rate ensures that the deposit
rate is lower after period 4 than without negative interest rates. This lower path for the
deposit rate allows inflation to overshoot after st is back at steady state, also lowering the
expected real deposit rate in early periods. As a consequence the drop in inflation and
the widening of the output gap is less severe. The scenario without the cost of negative
rates (ϕ = 0) shows the maximum impact of negative interest rates. In this case, the
reserve rate reaches −3.8% in period 2 and the deposit rate is a full 1 percentage point
lower in period 6 than in the case without negative rates. The drop in the output gap
and inflation is much less pronounced than in the other two scenarios.
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This exercise illustrates that the increased frequency at the ZLB arises for two reasons:
First, signalling with negative rates keeps the deposit rate lower-for-longer in response to
a contractionary shock. Second, on impact the policymaker with access to negative rates
is willing to cut the policy rate faster. Observe that, due to smoothing, the black-solid line
does not reach the ZLB until period 3 as the benefit of cutting the period-2 policy rate
further is outweighed by the cost in terms of smoothing rates. In contrast, the red-dash
and green-dot lines (negative rate scenarios) already reach the ZLB in period 2.
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A.9 Comparative statics: closed-form solutions [Section 2.4]

In Section 2.4 we set λ = 0, we set ψ = 0 except for between periods 1 and 2, and st = 0

for t > 1. This allows for an analytical derivation of equilibrium outcomes. In particular,
πt = yt = 0 for t > 2. Thus, the central banks loss function reduces to

−V ∝ π2
1 + β

(
(1− ψ)π2

2 + ψ (r2 − r1)
2) . (A26)

The policymaker is subject to the following constraints

π1 = βπ2 + κy1, (A27)

y1 = y2 − σ−1 (rd,1 − π2)− ϕ (rd,1 − r1) + g, (A28)

π2 = κy2, (A29)

y2 = −σ−1r2, (A30)

rd,1 ≥ −r̄, (A31)

r2 ≥ −r̄, (A32)

rd,1 − r1 ≥ 0, (A33)

(rd,1 + r̄) (rd,1 − r1) = 0, (A34)

where the expectations operator has been dropped because there is no uncertainty. In
addition, there is no incentive to set a negative interest rate in period 2 so rd,2 = r2. In
contrast to the main text, we make g mean zero and set the ZLB constraint as −r̄.

We consider optimal policy under discretion. There are 4 possible equilibrium outcomes:

(++) : r1 > −r̄, r2 > −r̄, (A35)

(0+) : r1 = −r̄, r2 > −r̄, (A36)

(−+) : r1 < −r̄, r2 > −r̄, (A37)

(−0) : r1 < −r̄, r2 = −r̄. (A38)

We solve the problem backwards. First solving for the optimal r2 given a value for r1.

For (·0), we have

r
∗(0)
2 = −r̄. (A39)

For (·+), the period 2 problem is given by

min
r2

(1− ψ) π2
2 + ψ (r2 − r1)

2 s.t. π2 = −κσ−1r2. (A40)
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The first-order condition is given by

(1− ψ)
(
κσ−1

)2
r2 + ψ (r2 − r1) = 0, (A41)

or, rearranged, as

r
∗(+)
2 = R

(+)
2 r1, (A42)

π
∗(+)
2 = Π

(+)
2 r1, (A43)

where R
(+)
2 ≡ ψ

ψ + (1− ψ) (κσ−1)2
, (A44)

Π
(+)
2 ≡ −κσ−1R

(+)
2 . (A45)

Now that we have the optimal reaction function for r2 as a function of r1, we can solve
the period 1 problem, taking the behaviour of the policymaker in period 2 as given.

For (++), the period 1 problem is given by

min
r1

π2
1 + β

(
(1− ψ)π2

2 + ψ (r2 − r1)
2) (A46)

s.t. π1 = Π
(++)
1 r1 + κg, (A47)

π2 = Π
(+)
2 r1, (A48)

r2 = R
(+)
2 r1, (A49)

where Π
(++)
1 ≡ −κ

((
β + 1 + κσ−1

)
σ−1R

(+)
2 + σ−1

)
, (A50)

and the first-order condition is given by(
Π

(++)
1 r1 + κg

)
Π

(++)
1 + β

(
(1− ψ)

(
Π

(+)
2

)2
r1 + ψ

(
R

(+)
2 − 1

)2
r1

)
= 0, (A51)

or, rearranged, as

r
∗(++)
1 = − κΠ

(++)
1 g(

Π
(++)
1

)2
+ β

(
(1− ψ)

(
Π

(+)
2

)2
+ ψ

(
R

(+)
2 − 1

)2) . (A52)
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For (−+), the constraints are given by

π1 = Π
(−+)
1 r1 + CΠ

(−+)
1 r̄ + κg, (A53)

π2 = Π
(+)
2 r1, (A54)

r2 = R
(+)
2 r1, (A55)

where Π
(−+)
1 ≡ −κ

((
β + 1 + κσ−1

)
σ−1R

(+)
2 − ϕ

)
, (A56)

CΠ
(−+)
1 ≡ κ

(
σ−1 + ϕ

)
, (A57)

and the solution is given by

r
∗(−+)
1 = − CΠ

(−+)
1 Π

(−+)
1 r̄ + κΠ

(−+)
1 g(

Π
(−+)
1

)2
+ β

(
(1− ψ)

(
Π

(+)
2

)2
+ ψ

(
R

(+)
2 − 1

)2) . (A58)

For (0+), we have

r
∗(0+)
1 = −r̄. (A59)

For (−0), the constraints are given by

π1 = Π
(−0)
1 r1 + CΠ

(−0)
1 r̄ + κg, (A60)

π2 = CΠ
(0)
2 r̄, (A61)

r2 = −r̄, (A62)

where Π
(−0)
1 ≡ κϕ, (A63)

CΠ
(−0)
1 ≡ κ

((
β + 2 + κσ−1

)
σ−1 + ϕ

)
, (A64)

CΠ
(0)
2 ≡ κσ−1, (A65)

and the first-order condition is given by(
Π

(−0)
1 r1 + CΠ

(−0)
1 r̄ + κg

)
Π

(−0)
1 + βψ (r̄ + r1) = 0, (A66)

or, rearranged, as

r∗(−0) = −Π
(−0)
1 CΠ

(−0)
1 r̄ +Π

(−0)
1 κg + βψr̄(

Π
(−0)
1

)2
+ βψ

. (A67)

This completes the full set of equilibrium conditions. Numerically, we solve for each
possible case and throw out any solutions which violate the assumptions of that case. If
multiple solutions exist, we choose the one that maximizes welfare.

Next, we use these analytical results to prove Propositions 5 and 6 in the main text.
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Proof of Proposition 5 Proposition 5 states that there exists a threshold ϕ∗ below
which a negative interest rate policy is effective in both raising inflation π1 and output y1.
We prove this as follows.

First, we assume the size of g ensures that r2 = rd,2 > 0, rd,1 = 0, and r < 0. Second, r2 is
set optimally as in equation (A42). Third, we substitute into the period 1 Phillips curve
in order to write π1 in terms of r1. This is given by

π1 = −κ
((
β + 1 + κσ−1

)
σ−1 ψ

ψ + (1− ψ) (κσ−1)2
− ϕ

)
r1. (A68)

The condition for negative rates to be effective, ∂π1/∂r1 < 0, therefore holds when

ϕ < ϕ∗
π =

(
β + 1 + κσ−1

)
σ−1 ψ

ψ + (1− ψ) (κσ−1)2
. (A69)

Note the threshold for raising output in period 1, ϕ∗
y, is more demanding. In particular,

ϕ∗
y =

(
1 + κσ−1

)
σ−1 ψ

ψ + (1− ψ) (κσ−1)2
. (A70)

Hence, it is possible, if ϕ∗
y < ϕ < ϕ∗

π, that negative rates raise inflation while causing a
contraction in output. Setting ϕ∗ = ϕ∗

y completes the proof.
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Proof of Proposition 6 Proposition 6 states that the cut in the policy rate needed
to generate the same effect on output (and inflation) is larger in negative than in positive
territory. We prove this as follows.

One, the IS equation in period 1 can be rewritten as a relationship between y1 and g,

y1 (g) = y2 (r1 (g))− σ−1 (rd,1 (r1 (g))− π2 (r1 (g)))− ϕ (rd,1 (r1 (g))− r1 (g)) + g. (A71)

Two, note that ∂rd,1/∂r1 = 1 when r1 > 0 and ∂rd,1/∂r1 = 0 when r1 < 0. Three, since
we assume g is such that r2 > 0, it follows that ∂π2/∂r1 and ∂y2/∂r1 are common across
both r1 < 0 and r1 > 0 scenarios. Four, note that ∂π1/∂r1 only differs across scenarios
in so far as ∂y1/∂r1 differs across scenarios. Hence, when evaluating the effectiveness of
policy, we need only concern ourselves with ∂y1/∂r1. Five, let us evaluate the response
∂r1/∂g that ensures dy1/dg = 0. When r1 < 0 and r2 > 0, the derivative dy1

dg
= 0 is

0 =
∂y2
∂r1

∂r1
∂g

− σ−1

(
−∂π2
∂r1

∂r1
∂g

)
− ϕ

(
−∂r1
∂g

)
+ 1, (A72)

=⇒ ∂r1
∂g

∣∣∣∣
r1<0,r2>0

=
1(

−∂y2
∂r1

− σ−1 ∂π2

∂r1
− ϕ
) . (A73)

In the scenario where r1, r2 > 0, the derivative is given by

0 =
∂y2
∂r1

∂r1
∂g

− σ−1

(
∂r1
∂g

− ∂π2
∂r1

∂r1
∂g

)
+ 1, (A74)

=⇒ ∂r1
∂g

∣∣∣∣
r1,r2>0

=
1(

−∂y2
∂r1

− σ−1 ∂π2

∂r1
+ σ−1

) . (A75)

Next, we assume that −
(

∂y2
∂r1

+ σ−1 ∂π2

∂r1

)
> ϕ. This is equivalent to the threshold condition

in Proposition 5 that ensures negative rates are effective. If this condition holds and
negative rates are effective, then the proof reduces to σ−1 > −ϕ, which is always true.

Finally, note that the proof follows the same steps if started from dπ1/dg = 0.
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B Quantitative model

Appendix B relates to Section 3 (main paper) on the effectiveness of negative rates in a
quantitative new-Keynesian model. Section B.1 shows how to derive the financial sector
equilibrium in just two equations. Section B.2 documents the complete set of equilib-
rium equations. Section B.3 provides further information on the parameterization of the
model regarding calibration targets, estimation method and results, as well as data sources
and treatment. Section B.4 reports additional empirical evidence on policy smoothing.
Section B.5 shows that without interest rate inertia the signalling channel is not active.
Section B.6 derives the bank profit decomposition in our baseline model and in an ex-
tended version of the model with firm equity and loan finance. Sections B.7 documents
the robustness of our results with respect to changes in the Frisch labor supply elastic-
ity, the Phillips curve slope, the investment elasticity, and the introduction of nominal
wage rigidities. Finally, Section B.8 summarizes the necessary changes to the equilibrium
system of equations when nominal wage rigidities are introduced.
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B.1 Set up: derivation of the banker’s problem [Section 3.1]

A banker j solves

Vn,t (j) = max
{St(j),At(j),Dt(j),Nt(j)}

EtΛt,t+1 ((1− θ)Nt+1(j) + θVn,t+1 (j)) , (B1)

subject to

QtSt(j) + At(j) = Dt(j) +Nt(j), (B2)

Vn,t (j) ≥ λQtSt(j), (B3)

At(j) = α (xt)Dt(j), (B4)

Nt(j) = Rk,tQt−1St−1(j) +
Rt−1

Πt

At−1(j)−
Rd,t−1

Πt

Dt−1(j), , (B5)

where the constraints are the balance sheet constraint, incentive compatibility constraint,
reserve ratio, and net worth accumulation, respectively. We calibrate the model such that
the incentive constraint is always binding. Next, we simplify the system of constraints by
substituting reserves, At(j), and deposits, Dt(j), making use of Equations (B2) and (B4).
We also define Φt ≡ QtSt(j)/Nt(j) to be the leverage ratio of a banker (and Φt is common
across banks). Thus, the accumulation of net worth, (B5), is given by

Nt(j) =

(
Rk,tΦt−1 −

Rd,t−1 − α (xt)Rt−1

(1− α (xt))Πt

(Φt−1 − 1)

)
Nt−1(j). (B6)

Furthermore, we conjecture the value function to take the form

Vn,t(j) = (ζs,tΦt + ζn,t)Nt(j), (B7)

where ζs,t and ζn,t are as yet undetermined.

Substituting (B6) and (B7), the banker’s problem can be rewritten as

(ζs,tΦt + ζn,t) = max
Φt

EtΛt,t+1 ((1− θ) + θ (ζs,t+1Φt+1 + ζn,t+1))

×
(
Rk,t+1Φt −

Rd,t − α (xt+1)Rt

(1− α (xt+1))Πt+1

(Φt − 1)

)
, (B8)

subject to

ζs,tΦt + ζn,t = λΦt. (B9)
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We rearrange the incentive compatibility constraint (B9) and iterate one period forward
to find optimal (and maximum) leverage given by

Φt+1 =
ζn,t+1

λ− ζs,t+1

. (B10)

With (B10), comparing the left and right hand side of (B8), we verify the conjectured
functional form of the value function. This allows us to summarize the solution to the
financial intermediary’s problem in the binding incentive constraint given by

λΦt = EtΛt,t+1 ((1− θ) + θλΦt+1)

(
Rk,t+1Φt −

Rd,t − α (xt+1)Rt

(1− α (xt+1))Πt+1

(Φt − 1)

)
. (B11)

Aggregate net worth in the financial sector evolves as a weighted sum of existing banks’
accumulated net worth (B6) and start up funds new banks receive from the household.
Entering banks receive a fraction ω of the total value of intermediated assets, i.e. ωQtSt−1.
In equilibrium, St = Kt. Thus, the evolution of aggregate net worth is given by

Nt = θ

(
Rk,tΦt−1 −

Rd,t−1 − α (xt)Rt−1

(1− α (xt))Πt

(Φt−1 − 1)

)
Nt−1 + ωQtKt−1. (B12)

Equations (B11) and (B12) express the financial sector problem in just two equations.
This completes the derivation.
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B.2 Set up: list of equilibrium conditions [Section 3.1]

In equilibrium, we summarize the quantitative model in 23 equations in 23 endogenous
variables, {Yt, Ym,t, Lt, Ct, C̃t, Λt,t+1, µt, Kt, It, In,t, Nt, Φt, ∆t, Wt, Πt, Xt, Pm,t, Qt, Rk,t,
RT,t, Rt, Rd,t, CSt}, and 3 exogenous processes, {ζt, ϵt, εm,t}. Government expenditure,
G, is financed via lump-sum taxes and kept constant.

Households

• Euler equation

1 = EtΛt,t+1 exp (ζt)Rd,t/Πt+1 (B13)

• Labor supply

µtWt = χLφ
t (B14)

• Stochastic discount factor

Λt,t+1 = βµt+1/µt (B15)

• Marginal utility of consumption

µt = C̃−σ
t − βℏEtC̃

−σ
t+1 (B16)

Financial intermediaries

• Incentive compatibility constraint

λΦt = EtΛt,t+1 ((1− θ) + θλΦt+1)

(
Rk,t+1Φt −

Rd,t − α (xt)Rt

(1− α (xt)) πt+1

(ϕt − 1)

)
(B17)

• Evolution of aggregate net worth

Nt = θ

(
Rk,tΦt−1 −

Rd,t−1 − α (xt)Rt−1

(1− α (xt))Πt

(Φt−1 − 1)

)
Nt−1 + ωQtKt−1 (B18)

Intermediate goods firms

• Price of capital

1 = Qt

(
1− η

2

(
In,t − In,t−1

In,t−1 + I

)2

− η
In,t − In,t−1

(In,t−1 + I)2
In,t

)

+ EtΛt,t+1Qt+1

(
η (In,t+1 − In,t)

In,t+1 + I

(In,t + I)3
In,t+1

)
(B19)
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• Production function

Ym,t = Kγ
t−1L

1−γ
t (B20)

• Labor demand

Wt = (1− γ)Pm,tYm,t/Lt (B21)

• Return on capital

Rk,t =
γPm,tYm,t/Kt−1 +Qt − δ

Qt−1

(B22)

Retail firms

• Price Phillips curve (
ϵ

ϵ− 1

)
Dt

Ft

=

(
1− ιΠϵ−1

t

1− ι

) 1
1−ϵ

. (B23)

where Dt ≡ µtPm,tYt + βιEt Π
ϵ
t+1Dt+1,

Ft ≡ µtYt + βιEt Π
ϵ−1
t+1Ft+1.

• Price dispersion

∆t = (1− ι)

[(
ϵ

ϵ− 1

)
Dt

Ft

]−ϵ

+ ιΠϵ
t∆t−1 (B24)

Monetary policy

• Policy rule

RT,t =

(
RΠϕπ

t

(
Xt

X

)ϕx
)1−ρ

Rρ
t−1 exp (εm,t) (B25)

• No arbitrage

(I) Rt = Rd,t = RT,t , or
(II) Rt = Rd,t = max {1, RT,t} , or

(III) Rt = RT,t and Rd,t = max {1, RT,t} . (B26)

General equilibrium

• Aggregate output

Yt = Ym,t/∆p,t, (B28)
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• Aggregate resource constraint

Yt = Ct + It +G (B29)

• Capital accumulation

Kt = Kt−1 + f (In,t, In,t−1) , (B30)

where f (In,t, In.t−1) ≡
(
1− (η/2) ((In,t + In,t−1) / (In,t−1 + I))2

)
In,t.

Further definitions

• Habit adjusted consumption

C̃t = Ct − ℏCt−1 (B31)

• Total investment

It = In,t + δKt−1 (B32)

• Leverage

Φt = QtKt/Nt (B33)

• Marginal cost

Xt = Pm,t (B34)

• Credit spread

CSt = Rk,t+1/ (Rd,t/Πt+1) (B35)
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B.3 Parameterization: further details [Section 3.2]

Table 1 in the main text presents the baseline parameterization of the quantitative model.
The parameters are grouped into three blocks. Block A contains structural parameters
that are assigned standard values from the literature. Block B is calibrated using steady
state relationships. Block C is estimated using a simulated method of moments procedure.

Block B. Leverage A good data counterpart to aggregate leverage in the model is hard
to come by. From 2009 to 2019, the US commercial banking sector had an average leverage
of 9.4.2 This measure excludes non-bank financial institutions such as hedge funds and
broker dealers that are typically more leveraged. In 2021, estimates for the total assets of
the non-bank financial sector were 1.86 times larger than the total assets of commercial
banks. Moreover, from 2009 to 2019, leverage of the non-financial corporate business
sector was 1.9, implying a significantly lower economy-wide leverage ratio. We follow
Gertler and Karadi (2011), aggregating across these highly heterogeneous sectors and,
assuming that leverage in the non-bank financial sector is twice that of the commercial
banking sector, end up with a conservative estimate of aggregate leverage of 3.6. Given
the uncertainty in these calculations, we opt to calibrate the model to a leverage ratio
of 4 (see below for further details on how we construct our measure of leverage).

Figure B1: Credit spreads and reserves in the US

Note: (a) AAA and BAA are Moody’s Seasoned AAA and BAA Corporate Bond Yields, respectively;
FFR is the Effective Federal Funds Rate; 10Y Tr is the market yield on Treasury Securities at 10-Year
Constant Maturity. (b) Total reserves of depository institutions over total deposits of commercial banks.
Source: Federal Reserve Bank of St Louis.

2Consistent with the model, leverage is A/ (A− L), where A is total assets and L is total liabilities.
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Block B. Credit spreads Calibrating the steady state credit spread is equally tricky.
In Figure B1(a) we plot three alternative spread measures used in the literature. The
first is the spread between the BAA corporate bond yield and the federal funds rate (light
blue-dot). The two component interest rates that compromise the spread are a reasonable
match for the expected return on capital and the short-term policy rate in the model,
respectively. We thus use the cyclical properties of these series in the estimation stage
below. However, for matching the steady state credit spread, this measure is not ideal
because it contains a maturity mismatch. The corporate bonds yields are based on long-
term bonds with a maturity of 20 years and above whereas the federal funds rate is a
short-term rate. Thus, this series is likely to contain both a liquidity and term premium in
addition to a pure risk premium. To get a sense of these various premia, we plot the spread
between the BAA corporate bond yield and the 10 year Treasury yield (dark blue-dash)
and between the BAA and AAA corporate bond yields (green dot-dash), respectively.
For the credit spread in the model, we match its steady state to 1% annualized which
corresponds to the mean of the “BAA-AAA” series over the sample period. This series
is generally perceived to be a good empirical measure of the safety or quality premium
that we capture with the financial friction in our model (see Krishnamurthy and Vissing-
Jorgensen, 2012).

Block B. Reserve ratio We set the reserve-to-deposit rate α = 0.2. This value is
broadly in line with data for both the euro area—as displayed in Figure 1—and the United
States. Figure B1(b) shows the evolution of the US reserve ratio. In the aftermath of
the 2007/08 financial crisis, total reserve holdings strongly increased, reflecting banks’
desire to hedge against heightened liquidity risk and the Federal Reserve’s willingness
to supply extensive additional reserves to the banking system via a range of liquidity
and QE programs. Accordingly, the reserve-to-deposit ratio rose from a pre-crisis level
of around 1% to a peak of 27.9% in August 2014. The banking system’s demand for
liquidity spiked again during the Covid-19 crisis when the Federal Reserve once more
sharply increased the provision of reserves to meet this additional demand. Overall, we
find a value of 18.9% for the average reserve ratio over the post-financial crisis period in
the US. As the strength of the costly interest margin channel of negative interest rates
will depend sensitively on the quantity of reserves in the banking system, in Section 3.4
in the main text we conduct a sensitivity analysis where we vary this quantity and show
the implications on the effectiveness of a negative interest rate policy.
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Block C. We estimate the structural parameters in Block C following the method of
simulated moments in Basu and Bundick (2017). In particular, the parameter values
are chosen to minimize the distance between the model implied moments and their data
counterparts. Formally, the vector of estimated parameters, Θ, is the solution to

min
Θ

(
HD −H (Θ)

)′ W−1
(
HD −H (Θ)

)
, (B36)

where HD is a vector of data moments, H (Θ) denotes its model counterpart, and W is a
diagonal weighting matrix containing the standard errors of the estimated data moments.

The estimation targets ten moments from US time-series data and five yield curve mo-
ments. The first ten moments are the standard deviations and autocorrelations of output,
consumption, inflation, the federal funds rate, and the credit spread, respectively. The
remaining five moments are the movements in the 6-month, 1-, 2-, 5-, and 10-year risk-free
rates, respectively, relative to the movement in the 3-month risk-free rate in response to a
monetary shock. Empirical estimates are taken from Altavilla et al. (2019). The risk-free
yield curve can be extracted from the model using the following set of equations:

P2,t = EtΛt,t+1P1,t+1,

...

P40,t = EtΛt,t+1P39,t+1,

where P1,t = 1/Rt is the price of a 1-period risk-free bond that pays 1 unit in period t+1.
The annualized yield on the 10-year risk-free bond is therefore given by R40,t = P

−1/10
40,t .

With 15 moments, we estimate four parameters θ = {η, ρ, σζ , σϵ}, the inverse investment
elasticity, the policy rule inertia coefficient, and the standard deviations of risk premium
and cost-push innovations. The estimation is thus over-identified. We choose to estimate
the investment elasticity parameter because its value is not well-informed by the literature
and its value has implications for the strength of the financial accelerator and the dynamics
of credit spreads and net worth. The estimation delivers an inverse investment elasticity
of η = 1.617. We also choose to estimate the policy rule inertia coefficient because it is
crucial for the strength of the signalling channel of negative interest rates. The estimation
delivers a value of ρ = 0.856, which suggests a significant amount of policy smoothing.

Table B1 compares the parameterized model implied moments with those from the data.
The table also includes the 95% confidence interval around the data estimates. Despite
only estimating a small number of parameters, the model does a good job of matching
the data. The model implied moments are within the confidence interval for the yield
curve moments. In terms of the business cycle moments, the model does well in terms of
matching most of the standard deviations but generates too much persistence relative to
the data (the exception is the credit spread, in which the data is more persistent).
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Table B1: Simulated method of moments results

Data Model Data Model Data Model

std(y) 1.014 0.877 ac(y) 0.874 0.973 mp(r6m) 0.843 0.839
(0.76-1.27) (0.82-0.93) (0.80-0.89)

std(c) 0.714 0.641 ac(c) 0.831 0.990 mp(r1y) 0.677 0.587
(0.54-0.89) (0.77-0.89) (0.55-0.81)

std(π) 0.175 0.196 ac(π) 0.330 0.760 mp(r2y) 0.503 0.301
(0.14-0.21) (0.14-0.52) (0.29-0.72)

std(r) 0.265 0.144 ac(r) 0.935 0.961 mp(r5y) 0.324 0.135
(0.20-0.33) (0.89-0.98) (0.11-0.54)

std(cs) 0.279 0.345 ac(cs) 0.895 0.745 mp(r10y) 0.092 0.101
(0.20-0.36) (0.83-0.95) (-0.08-0.26)

Untargeted moments

std(i) 4.470 4.272 ac(i) 0.914 0.972 cr(y, c) 0.807 0.599
(2.92-6.02) (0.84-0.99) (0.72-0.89)

cr(y, i) 0.906 0.890 cr(y, π) 0.362 -0.539 cr(y, r) 0.689 -0.644
(0.86-0.95) (0.14-0.58) (0.56-0.82)

cr(y, cs) -0.690 -0.539
(-0.84–0.54)

Note: Construction of moments given in Appendix B.3. y, c, π, r, and cs refer to GDP, consumption,
inflation, the federal funds rate, and the credit spread, respectively. std(·) and ac(·) refer to the standard
deviation and first-order autocorrelation. r6m, r1y, r2y, r5y, and r10y refers to the OIS 6 month, 1, 2, 5,
and 10 year rate, respectively. mp(·) refers to the relative response of the relevant OIS rate to the 3
month OIS rate in response to a monetary policy shock. Estimates are taken from Altavilla et al. (2019).
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Data sources. We use US quarterly data covering the period 1985:Q1 to 2019:Q1. All
macroeconomic and financial time series used are extracted from the Federal Reserve
Economic Data (FRED) database at the St Louis FED. Table B2 summarizes this.

Data treatment We transform all nominal aggregate quantities into real per-capita
terms. Inflation is defined as the quarter-on-quarter log growth rate of the GDP deflator.
Nominal interest rates and spreads are divided by four to generate quarterly rates. For the
estimation, all variables are stationarized using a standard HP-filter (λ = 1600). Data
moments are matched with model moments for all relevant observables, where a lower
case denotes the log deviation of the corresponding variable from steady state. Table B3
documents the data transformations in detail.

Table B2: Data sources

Mnemonic Description

CNP16OV Population level

GDP Gross domestic product
GDPDEF Gross domestic product: implicit price deflator
GPDI Gross private domestic investment
PCDG Personal consumption expenditures: durable goods
PCND Personal consumption expenditures: nondurable goods
PCESV Personal consumption expenditures: services
FEDFUNDS Effective federal funds rate
DGS10 10-Year Treasury constant maturity rate
AAA Moody’s seasoned Aaa corporate bond yield
BAA Moody’s seasoned Baa corporate bond yield

TOTRESNS Total reserves of depository institutions
DPSACBM027NBOG Deposits, all commercial banks
TABSNNCB Total assets, nonfinancial corporate business
TLBSNNCB Total liabilities, nonfinancial corporate business
TLAACBW027SBOG Total assets, all commercial banks
TLBACBW027SBOG Total liabilities, all commercial banks
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Table B3: Data treatment

Observable Description Construction

Steady state calibration & Figure B1

Spread measure I BAA - FEDFUNDS
Spread measure II BAA - DGS10
Spread measure III BAA - AAA
Reserve ratio TOTRESNS/DPSACBM027NBOG
Leverage see computation below*

Dynamic moment matching

y Output HP-filter[GDP/(GDPDEF x NCP160V)]
c Consumption HP-filter[(PCND + PCESV)/(GDPDEF x NCP160V)]
π Inflation HP-filter[ln(GDPDEF/GDPDEF−1)]
r Reserve rate HP-filter[FEDFUNDS/4]
cs Credit spread HP-filter[(BAA - FEDFUNDS)/4]
i Investment HP-filter[(PCDG + GPDI)/(GDPDEF x NCP160V)]

* Construction of the leverage series:

Aggregate Leveraget =
Acb

t (1 + s) + Anfc
t

Acb
t (1 + s) + Anfc

t − Lcb
t − Lncbfi

t − Lnfc
t

, (B37)

where At and Lt denote assets and liabilities and where the superscripts “cb”, “nfc”, and
“ncbfi” refer to commercial banks, non-financial corporations, and non-commercial bank
financial institutions, respectively. Lncbfi

t is given by

Lncbfi
t = sAcb

t

1− 1

f
(

Acb
t

Acb
t −Lcb

t

)
 (B38)

where s = 1.86 and we assume f = 2.3

3The scaling factor s is derived from the May 2021 Federal Reserve Financial Stability Report, Chapter
3, Table 3. We calculate s = A/B where A is the total assets of mutual funds, insurance companies,
hedge funds, and broker-dealers and B is the total assets of banks and credit unions.
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B.4 Parameterization: policy smoothing [Section 3.2]

In the estimation, we find a policy inertia coefficient of ρ = 0.856, suggesting that policy
smoothing is an important feature of the data. As the strength of the signalling channel of
negative interest rates will depend sensitively on the degree of policy inertia, we support
the results of this estimation with further evidence, and—as for the reserve-to-deposit
ratio—show sensitivity results in Section 3.4 in the main text.

Literature Figure B2(a) documents estimates of policy smoothing from the literature
for the US, euro area, and four additional countries. Two key messages emerge. First,
there is robust evidence for a large inertial component of monetary policy, irrespective
of the estimation technique or country considered. Second, the estimates range from
0.80 (Primiceri et al., 2006, US) to 0.96 (Smets and Wouters, 2003, euro area). Thus,
our baseline value of ρ = 0.856 is, if anything, on the more conservative side of possible
parameterizations in terms of quantifying the strength of the signalling channel.4

Negative rates in Sweden There might be a concern that that these estimates are
limited to periods in which policy rates were in positive territory. Figure B2(b) provides
suggestive evidence from Sweden that policy inertia extends to negative rate episodes as
well. Between February 2015 and February 2016, the Swedish Riksbank lowered the repo
rate, its key policy rate, in four steps from 0% to −0.5%. Repo rate forecasts published by
the Riksbank around the respective monetary policy decisions show that every negative
rate decision came with a substantial downward revision of the forecasted path of the
future policy rate, both extending the expected ZLB duration and lowering the expected
future policy rate. This is consistent with inertial policy-setting as documented above.

4Rudebusch (2002, 2006) argues that observed policy inertia may, in fact, reflect persistent shocks
rather than interest rate smoothing. However, recent work by Coibion and Gorodnichenko (2012) finds
strong evidence in favour of the interest rate smoothing explanation.
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Figure B2: Monetary policy inertia in the literature and in practice

(a) Estimates of policy rule inertia

United States Euro area
Primiceri et al. (2006) 0.80 Smets and Wouters (2003) 0.96
Smets and Wouters (2007) 0.81 Christiano et al. (2010) 0.84
Coibion and Gorodnichenko (2012) 0.83 Darracq Pariès et al. (2011) 0.84
Brayton et al. (2014) 0.85 Coenen et al. (2018) 0.93
Christiano et al. (2014) 0.85 Japan
United Kingdom Sugo and Ueda (2007) 0.84
Burgess et al. (2013) 0.83 Sweden
Switzerland Adolfson et al. (2008) 0.88
Rudolf and Zurlinden (2014) 0.90 Christiano et al. (2011) 0.82

Note: Estimates of ρ for a selection of papers and central bank policy models. Brayton et al. (2014) is
the Federal Reserve’s FRB/US model, Burgess et al. (2013) is the Bank of England’s COMPASS model,
and Coenen et al. (2018) is the ECB’s New Area Wide Model II.

(b) Riksbank repo rate forecasts during negative interest rates

Note: The blue-dot and green-dash lines show the Riksbank’s own repo rate forecasts around monetary
policy meetings in which they lowered the repo rate, based on quarterly averages. The actual repo rate
(black-solid line) is based on daily data. Source: Riksbank monetary policy reports.
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B.5 Results: signalling channel without inertia [Section 3.3]

Figure B3 is analogous to Figure 6 in the main text and shows the signalling channel
vs. net interest margin channel decomposition when ρ = 0 in the quantitative model.
The figure shows that in the absence of rt−1 in the monetary policy rule, the signalling
channel is completely shut down. This is true despite the existence of a range of further
endogenous state variables in the model.

Figure B3: Contribution of signalling and interest margin channels (no inertia)

Note: Replication of Figure 6 without policy inertia (ρ = 0). Impulse responses to a −25bp iid monetary
policy shock at the ZLB. Inflation is annualized. We linearly decompose the baseline response into
“Signalling”—α = 0 and ρ = 0, i.e. no costly interest margin channel—and “Interest margin”—difference
between the baseline and “Signalling”.
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B.6 Results: derivation of bank profit decomposition [Section 3.3]

Baseline This section derives Equation (30) in the main text. From Equations (27)
and (28), the evolution of net worth (conditional on not exiting) is given by

Nt =

(
Rk,tΦt−1 −

Rd,t−1 − α (xt)Rt−1

(1− α (xt))Πt

(Φt−1 − 1)

)
Nt−1. (B39)

Defining profits as proft ≡ ΠtNt/Nt−1 and rearranging terms gives

proft = (ΠtRk,t −Rd,t−1) Φt−1 +Rd,t−1 −
α (xt)

1− α (xt)
(Rd,t−1 −Rt−1) (Φt−1 − 1) . (B40)

Adding and subtracting Et−1ΠtRk,tΦt−1 gives

proft =
(
Πt

mpkt +Qt − δ

Qt−1

− Et−1Πt
mpkt +Qt − δ

Qt−1

)
Φt−1

+ cst−1Φt−1 +Rd,t−1 −
α (xt)

1− α (xt)
(Rd,t−1 −Rt−1) (Φt−1 − 1) , (B41)

where Rk,t =
mpkt+Qt−δ

Qt−1
and cst ≡ EtΠt+1Rk,t+1 −Rd,t.

Log-linearizing and collecting terms we arrive at Equation (30) in the main text.

Model with firm equity and loan finance Suppose instead that firms borrow from
banks using a combination of equity and loans in proportion s and 1− s, respectively. In
particular, suppose that the return to a banker on a unit of capital is given by

Rs,t = sRk,t + (1− s)Rl,t−1, (B42)

where Rl,t ≡ EtRk,t+1. In this case, the credit spread is cst ≡ EtΠt+1Rs,t+1 −Rd,t and the
first-term on the right-hand side of Equation (B40) becomes (ΠtRs,t −Rd,t−1) Φt−1.

Adding and subtracting Et−1ΠtRs,t gives

(ΠtRs,t − Et−1ΠtRs,t) Φt−1 + cst−1Φt−1. (B43)

Log-linearizing around the deterministic steady state gives

RsΦ (π̂t − Et−1π̂t) +RsΦ (r̂s,t − Et−1r̂s,t) + csΦ
(
ĉst−1 + ϕ̂t−1

)
. (B44)

while log-linearizing Rs,t gives

Rsr̂s,t = s
(
mpk · ˆmpkt + q̂t

)
+ (1− s)Et−1

(
mpk · ˆmpkt + q̂t

)
−Rkq̂t−1. (B45)
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Therefore

Rs (r̂s,t − Et−1rs,t) = s · mpk
(
ˆmpkt − Et−1 ˆmpkt

)
+ s (q̂t − Et−1q̂t) . (B46)

Finally, the augmented version of Equation (30) that accounts for bank assets being
composed of a mix of equity and loans is given by

ˆproft =
RkΦ

prof
(π̂t − Et−1π̂t)︸ ︷︷ ︸

Surprise: Inflation

+ s
mpkΦ
prof

(
ˆmpkt − Et−1 ˆmpkt

)
︸ ︷︷ ︸

Surprise: Dividend

+ s
Φ

prof
(q̂t − Et−1q̂t)︸ ︷︷ ︸

Surprise: Capital gain

+
csΦ
prof

ĉst−1︸ ︷︷ ︸
Credit spread

+
csΦ
prof

ϕ̂t−1︸ ︷︷ ︸
Leverage

+
Rd

prof
r̂d,t−1︸ ︷︷ ︸

Deposit rate

− α

1− α

Rd (Φ− 1)

prof
(r̂d,t−1 − r̂t−1)︸ ︷︷ ︸

Interest margin channel

. (B47)

When s = 1, the formulation is the same as Equation (30) in the main text.

Based on De Fiore and Uhlig (2011) though, the debt to equity ratio of the non-financial
sector is 0.43 in the US and 0.64 in the euro area. This translates to sUS = 1/1.43 ≈ 0.70

and sEA = 1/1.64 ≈ 0.61, respectively. Figure B4 supplements our analysis on the
robustness of our model to changes in the firm equity-to-loan ratio showing the results of
the bank profit decomposition in Figure 6 in the main text for sUS and sEA.

Figure B4: Decomposition of bank profits
— Sensitivity with respect to equity/loan ratio —

Note: Replication of Figure 7 for alternative firm equity/loan ratios s. (a) sUS = 0.70, (b) sEA = 0.61.
α = 0.2, ρ = 0.85. The red-dot line plots the impulse response of bank profits to a −25bp iid monetary
policy shock at the ZLB. Stacked bars decompose the impulse response for every period.
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B.7 Results: further robustness [Section 3.4]

This section provides additional details and reports the results for the further robustness
exercises summarized towards the end of Section 3.4 in the main text.

Sensitivity w.r.t. Frisch elasticity As Chetty et al. (2011) report, macro estimates
of the Frisch elasticity from real business cycle models range from 2.61 to 4. Our baseline
value of 3.75 is within this range. Smets and Wouters (2007) estimate the value to be 1.92
whereas micro estimates are around 0.82. Another popular choice in the literature for
calibrated models is to set the elasticity to 1, between the micro and macro estimates
as in Hazell et al. (2022). Figure B5 replicates Figure 5 in the main text for a range
of plausible empirical values of the inverse elasticity of labor supply/ Frisch elasticity φ.
The figure shows that our results regarding the effectiveness of negative interest rates are
robust to changes of the exact value of φ. A higher inverse Frisch elasticity (i.e. a lower
labor supply elasticity of the household in the model) reduces the expansion in output in
response to a monetary policy easing relative to the baseline (depicted in rows 5 and 6).
However, since this is true for both monetary policy surprises in normal times and at the
ZLB, the relative efficiency of a monetary policy easing into negative territory remains
broadly unchanged (as can be seen comparing the red and blue lines across specifications).

Sensitivity w.r.t. Phillips curve slope As Harding et al. (2022) report, estimates
of the new-Keynesian Phillips curve slope in the literature range from 0.009 to 0.014.
Hazell et al. (2022) estimate the unemployment-inflation slope to be 0.0062. Based on a
Frisch elasticity between 1 and 3.62 (as above), this gives a Phillips curve slope in the
range 0.006 − 0.023. With a Calvo parameter of 0.9, our baseline Phillips curve slope is
0.012, well within both ranges. Figure B6 replicates Figure 5 in the main text for different
combinations of plausible empirical values of the inverse elasticity of labor supply/ Frisch
elasticity φ and the Calvo parameter ι keeping the unemployment-inflation slope constant
at 0.0062 as suggested by Hazell et al. (2022). The figure shows that our results regarding
the effectiveness of negative interest rates are robust to changes in the slope of the new-
Keynesian Phillips Curve. A higher inverse Frisch elasticity paired with tighter price
rigidity (i.e. a larger Calvo parameter) reduces both the expansion in output and inflation
in response to a monetary policy easing relative to the baseline case. However—as in the
case where we just vary the Frisch elasticity φ—since this is true for monetary policy
surprises in normal times and at the ZLB, the relative efficiency of a monetary policy
easing into negative territory remains broadly unchanged.
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Figure B5: Monetary policy shock with inertia in the policy rule
— Sensitivity with respect to inverse Frisch elasticity —

(a) High inverse Frisch elasticity

(b) Medium inverse Frisch elasticity

(c) Baseline inverse Frisch elasticity

Note: α = 0.2, ρ = 0.85. Impulse responses to a −25bp iid monetary policy shock at the ZLB. Rows 1
and 2 show results for an inverse Frisch elasticity of φ = 1 (Hazell et al., 2022), rows 3 and 4 for φ = 0.521
(Smets and Wouters, 2007), and rows 5 and 6 for φ = 0.276 (baseline). Interest rates are in annualized
basis points. All other variables are in basis point deviation from steady state. Inflation is annualized.
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Figure B6: Monetary policy shock with inertia in the policy rule
— Sensitivity with respect to Phillips Curve slope —

(a) Steep Phillips Curve

(b) Medium Phillips Curve

(c) Flat Phillips Curve

Note: α = 0.2, ρ = 0.85. Impulse responses to a −25bp iid monetary policy shock at the ZLB. The
values for the inverse Frisch elasticity φ from Figure B5 are paired with a Calvo parameter ι such that
the unemployment-inflation trade-off in all specifications is 0.0062 as suggested by Hazell et al. (2022).
Rows 1 and 2 depict results for {φ = 0.276, ι = 0.865}, rows 3 and 4 for {φ = 0.521, ι = 0.901}, and rows
5 and 6 for {φ = 1, ι = 0.929}. Interest rates are in annualized basis points. All other variables are in
basis point deviation from steady state. Inflation is annualized.
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Sensitivity w.r.t. investment elasticity The inverse investment elasticity η is dif-
ficult to pin down from the literature which is why we include the parameter in the
estimation matching a range of empirical moments (see Appendix B.3 for details). Our
estimate of η = 1.617 is close to the 1.728 value picked by Gertler and Karadi (2011)
and delivers a net worth response to an unconstrained 25bp monetary policy shock in
line with the empirical response in Jarociński and Karadi (2020) (194bp versus 210bp on
impact). Since the net worth response to monetary policy was not targeted in our estima-
tion, this outcome provides external validation for our parameterization. However, as the
parameter is crucial for the strength of the financial accelerator, we test the robustness
of our main results for a wide parameter range in Figure B7. The figure shows that our
results regarding the effectiveness of negative interest rates are robust to changes in the
investment elasticity. Increasing the investment elasticity strengthens the impact response
but decreases the persistence of monetary policy. Figure B8 replicates Figure 7 in the
main text. In terms of banks profitability, increasing the investment elasticity decreases
windfall capital gains for banks (as asset prices are less responsive) but raises windfall
dividends (as investment is more responsive) to a negative rate shock.

Sensitivity w.r.t. wage rigidities Finally, we augment the model with nominal wage
rigidities. Figures B9-B11 replicate Figures 4-6 in the main text when nominal wage
rigidities supplement nominal price rigidity in the model. The extension of the model in
this dimension is straightforward. Appendix B.8 details the necessary modifications. For
simplicity, we keep the baseline calibration unchanged and set the structural parameters
associated with Calvo wage rigidities as follows: ϵw—the elasticity of substitution between
different types of labor—is set to 4.167 (equal to the value picked for price rigidities), and
ιw—the probability of not being able to adjust wages next period—is set to 0.5. We also
marginally increase the size of the risk premium shock that takes the model to the ZLB
in order to regenerate our baseline experiment with the ZLB binding for four periods
(intuitively, this adjustment is needed due to the additional persistence in the model).
The figures show that a high Frisch elasticity and nominal wage rigidities are, to some
degree, substitutable in our analysis and that our results regarding the effectiveness of
negative interest rates are robust to the introduction of rigid wages. The introduction
of an additional nominal rigidity makes monetary policy interventions more powerful.
However—as in the case where we vary the Frisch elasticity and the slope of the new-
Keynesian Phillips Curve—since this is true for monetary policy surprises in normal times
and at the ZLB, the relative efficiency of a monetary policy easing into negative territory
remains broadly unchanged. Similar results can be obtained for alternative specifications
of ϵw and ιw.
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Figure B7: Monetary policy shock with inertia in the policy rule
— Sensitivity with respect to inverse investment elasticity —

(a) High inverse investment elasticity

(b) Baseline inverse investment elasticity

(c) Low inverse investment elasticity

Note: α = 0.2, ρ = 0.85. Impulse responses to a −25bp iid monetary policy shock at the ZLB. Rows 1
and 2 show results for an inverse investment elasticity of η = 10, rows 3 and 4 for η = 1.617 (baseline),
and rows 5 and 6 for η = 0.1. Interest rates are in annualized basis points. All other variables are in
basis point deviation from steady state. Inflation is annualized.
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Figure B8: Decomposition of bank profits
— Sensitivity with respect to inverse investment elasticity —

Note: Replication of Figure 7 for alternative inverse investment elasticities, η. (a) η = 10, (b) η = 0.1.
α = 0.2, ρ = 0.85. The red-dot line plots the impulse response of bank profits to a −25bp iid monetary
policy shock at the ZLB. Stacked bars decompose the impulse response for every period.

Figure B9: Wage rigidities: Risk premium shock with inertia in the policy rule

Note: Replication of Figure 4 with wage rigidities added to model (ιw = 0.5). α = 0.2, ρ = 0.85.
Impulse responses to a risk premium shock that brings the economy to the ZLB for 4 quarters. All
interest rates displayed are in annualized percent. All other variables are in 100×log-deviation from
steady state. Inflation is annualized.
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Figure B10: Wage rigidities: Monetary policy shock in negative territory

(a) Policy rule with inertia

(b) Policy rule without inertia

Note: Replication of Figure 5 with wage rigidities added to model (ιw = 0.5). (a) α = 0.2 and ρ = 0.85,
(b)α = 0.2 and ρ = 0. Impulse responses to a −25bp iid monetary policy shock at the ZLB. Interest
rates are in annualized basis points. All other variables are in basis point deviation from steady state.
Inflation is annualized.
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Figure B11: Wage rigidities: Contribution of signalling and interest margin channels

Note: Replication of Figure 6 with wage rigidities added to model (ιw = 0.5). Impulse responses to a
−25bp iid monetary policy shock at the ZLB. Inflation is annualized. We linearly decompose the baseline
response into “Signalling”—α = 0 and ρ = 0.85, i.e. no costly interest margin channel—and “Interest
margin”—difference between the baseline and “Signalling”.
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B.8 Results: equilibrium with wage rigidities [Section 3.4]

We add nominal wage rigidities to the quantitative model following Erceg et al. (2000).
Households supply homogeneous labor Lh,t at price Wh,t. Monopolistic labor unions,
owned by households, diversify and sell the labor good to intermediate goods firms as CES
aggregate Lt at mark-up price Wt. In equilibrium, this extends the model to 27 equations
in 27 endogenous variables, {Yt, Ym,t, Lt, Lh,t, Ct, C̃t, Λt,t+1, µt, Kt, It, In,t, Nt, Φt,
∆t, ∆w,t, Wt, Wh,t, Πt, Πw,t, Xt, Pm,t, Qt, Rk,t, RT,t, Rt, Rd,t, CSt}, and 3 exogenous
processes, {ζt, ϵt, εm,t}. In the following we only restate the equations that are new or
modified relative to the overview in B.2.

Households

• Labor supply (modified)

µtWh,t = χLφ
h,t (B48)

Labor Unions

• Wage Phillips Curve (new)

(
ϵw

ϵw − 1

)
Dw,t

Fw,t

=

[
1− ιw (Πt Πw,t)

ϵw−1

1− ιw

] 1
1−ϵw

(B49)

where Dw,t ≡ µtWh,tLt + βιwEt (Πt+1 Πwt+1)
ϵw Dw,t+1,

Fw,t ≡ µtWtLt + βιwEt (Πt+1Πwt+1)
ϵw−1Fw,t+1.

• Wage dispersion (new)

∆w,t = (1− ιw)

[(
ϵw

ϵw − 1

)
Dw,t

Fw,t

]−ϵw

+ ιw (ΠtΠw,t)
ϵw ∆w,t−1 (B50)

• Wage inflation (new)

Πw,t = Wt/Wt−1 (B51)

General equilibrium

• Aggregate labor (new)

Lt = Lh,t/∆w,t, (B52)

49



Appendix: The Signalling Channel of Negative Int Rates de Groot and Haas (2023)

References

Adolfson, M., Laséen, S., Lindé, J., Villani, M., 2008. Evaluating an Estimated New Keynesian Small
Open Economy Model. Journal of Economic Dynamics and Control 32, 2690–2721.

Altavilla, C., Brugnolini, L., Gürkaynak, R.S., Motto, R., Ragusa, G., 2019. Measuring Euro Area
Monetary Policy. Journal of Monetary Economics 108, 162–179.

Basu, S., Bundick, B., 2017. Uncertainty Shocks in a Model of Effective Demand. Econometrica 85,
937–958.

Brayton, F., Laubach, T., Reifschneider, D., 2014. The FRB/US Model: A Tool for Macroeconomic
Policy Analysis. FEDS Notes. Board of Governors of the Federal Reserve System .

Burgess, S., Fernandez-Corugedo, E., Groth, C., Harrison, R., Monti, F., Theodoridis, K., Waldron, M.,
Burgess, S., Fernandez-corugedo, E., Groth, C., Harrison, R., Monti, F., Theodoridis, K., Waldron,
M., 2013. The Bank of England’s Forecasting Platform: COMPASS, MAPS, EASE and the Suite of
Models. Bank of England Working Paper Series 471.

Chetty, R., Guren, A., Manoli, D., Weber, A., 2011. Are Micro and Macro Labor Supply Elasticities Con-
sistent? A Review of Evidence on the Intensive and Extensive Margins. AEA Papers and Proceedings
101, 471–475.

Christiano, L.J., Motto, R., Rostagno, M., 2010. Financial Factors in Economic Fluctuations. ECB
Working Paper Series 1192.

Christiano, L.J., Motto, R., Rostagno, M., 2014. Risk Shocks. American Economic Review 104, 27–65.

Christiano, L.J., Trabandt, M., Walentin, K., 2011. Introducing Financial Frictions and Unemployment
into a Small Open Economy Model. Journal of Economic Dynamics and Control 35, 1999–2041.

Coenen, G., Karadi, P., Schmidt, S., Warne, A., 2018. The New Area-Wide Model II: An Extended
Version of the ECB’s Micro-Founded Model for Forecasting and Policy Analysis with a Financial
Sector. ECB Working Paper Series 2200.

Coibion, O., Gorodnichenko, Y., 2012. Why Are Target Interest Rate Changes so Persistent? American
Economic Journal: Macroeconomics 4, 126–162.

Darracq Pariès, M., Sørensen, C.K., Rodriguez-Palenzuela, D., 2011. Macroeconomic Propagation un-
der Different Regulatory Regimes: Evidence from an Estimated DSGE Model for the Euro Area.
International Journal of Central Banking 7, 49–112.

De Fiore, F., Uhlig, H., 2011. Bank Finance versus Bond Finance. Journal of Money, Credit and Banking
43, 1399–1421.

Erceg, C.J., Henderson, D.W., Levin, A.T., 2000. Optimal Monetary Policy with Staggered Wage and
Price Contracts. Journal of Monetary Economics 46, 281–313.

Gertler, M., Karadi, P., 2011. A Model of Unconventional Monetary Policy. Journal of Monetary
Economics 58, 17–34.

Harding, M., Lindé, J., Trabandt, M., 2022. Resolving the Missing Deflation Puzzle. Journal of Monetary
Economics 126, 15–34.

Hazell, J., Herreño, J., Nakamura, E., Steinsson, J., 2022. The Slope of the Phillips Curve: Evidence
from U.S. States. Quarterly Journal of Economics 137, 1299–1344.

Jarociński, M., Karadi, P., 2020. Deconstructing Monetary Policy Surprises - The Role of Information
Shocks. American Economic Journal: Macroeconomics 12, 1–43.

50



Appendix: The Signalling Channel of Negative Int Rates de Groot and Haas (2023)

Krishnamurthy, A., Vissing-Jorgensen, A., 2012. The Aggregate Demand for Treasury Debt. Journal of
Political Economy 120, 233–267.

Primiceri, G.E., Schaumburg, E., Tambalotti, A., 2006. Intertemporal Disturbances. NBER Working
Paper Series 12243.

Rudebusch, G.D., 2002. Term Structure Evidence on Interest Rate Smoothing and Monetary Policy
Inertia. Journal of Monetary Economics 49, 1161–1187.

Rudebusch, G.D., 2006. Monetary Policy Inertia: Fact or Fiction? International Journal of Central
Banking 2, 85–135.

Rudolf, B., Zurlinden, M., 2014. A Compact Open Economy DSGE Model for Switzerland. SNB Economic
Studies 8.

Smets, F., Wouters, R., 2003. An Estimated Dynamic Stochastic General Equilibrium Model of the Euro
Area. Journal of the European Economic Association 1, 1123–1175.

Smets, F., Wouters, R., 2007. Shocks and Frictions In US Business Cycles: A Bayesian DSGE Approach.
American Economic Review 97, 586–606.

Sugo, T., Ueda, K., 2007. Estimating a DSGE Model for Japan: Evaluating and Modifying a
CEE/SW/LOWW Model. Bank of Japan Working Paper 07-E.

Tauchen, G., Hussey, R., 1991. Quadrature-Based Methods for Obtaining Approximate Solutions to
Nonlinear Asset Pricing Models. Econometrica 59, 371–396.

51


	Stylized model and optimal policy
	Set up: A simple model of reserve demand [Section 2.1]
	Log-linear equilibrium: derivation [Section 2.2]
	Log-linear equilibrium: a Taylor-type rule [Section 2.2]
	Analytical results: Propositions 2 and 3 [Section 2.3]
	Analytical results: additional state variables [Section 2.3]
	Numerical results: policy function iteration [Section 2.4]
	Numerical results: welfare computation [Section 2.4]
	Numerical results: optimal policy experiment [Section 2.4]
	Comparative statics: closed-form solutions [Section 2.4]

	Quantitative model
	Set up: derivation of the banker's problem [Section 3.1]
	Set up: list of equilibrium conditions [Section 3.1]
	Parameterization: further details [Section 3.2]
	Parameterization: policy smoothing [Section 3.2]
	Results: signalling channel without inertia [Section 3.3]
	Results: derivation of bank profit decomposition [Section 3.3]
	Results: further robustness [Section 3.4]
	Results: equilibrium with wage rigidities [Section 3.4]


